

THE AUSTRALIAN POSTOFFICE
CP 308

Engineering Training Section, Headquarters, Postmaster-General's Department, Melbourne L

INTRODUCTION TO PULSE TECHNIQUES
Page

1. INTRODUCTION 1
2. DEFINITIONS 2
3. FRERUENCY SPPCTRUM 5
4. D.C. COMPONENT 12
5. RESISTOR-CAPACITOR CIRCUITS 14
6. INDUCTOR-RESISTOR CIRCUITS 18
7. UNIVERSAI TIME CONSTANT CHART 21
8. EXPONENTIIAL FUNCTIONS 25
9. CHARGING FROM A NEXWORK 28
10. TEST QUESTIONS 31

AMENDED 1965

1. IMRRODUCTION
1.1 The first electrical communication scheme transferred information from one place to another in coded form, with the information being represented by groups of short and long bursts, or "pulses", of electrical energy. In modern electronics, pulses are finding more and more applications, as their original application in telegraphy for message transmission has been streamlined and extended to many other fields. A knowledge of pulses is required for an understanding of television, radar, electronic computers and the transmission of computer data, and for methods of communication using pulse modulation.
1.2 To successfully study pulse circuits, it is necessary to understand the terms used.
This paper defines the types of pulses commony encountered and the methods used to
specify the characteristics of pulses. Complex waves consist of a fundamental and many harmonics. So that the bandwidth necessary to transmit a pulse can be determined, the harmonics required to accurately reproduce a pulse with specified characteristics are examined.
The explanations of the operation of pulse circuits are baged on the "charge" and "discharge" of capacitors and inductors through resistors. Fith this in mind the currents and voltages existing in resistor-capacitor and inductor-resistor circuits are revised. These circuits are considered in Applied Electricity II in the paper "Vaveforms, Timing and Oscillatory Circuits", but the further discussion here shows how accurate calculations can be made to find the state of charge at any time.
2. DEFINITIONS.
2.1 Whve Shape. The initial description of any wave is by specifying its shape. The most common waveform considered is a sine wave, which is a graph of the sine of the angle of rotation of a vector as the angle varies with time. Other types of waveforms often encountered are -
(i) "Rectangular Waves" - Waves that alternate between two fixed values With negligible transition time compared with the duration of a cycle of the wave (Fig. 1a).
(ii) "Square Wavee" - Spocial oasea of rectangular waves where equal lengths of time are spent at each of the two fixed values (Fig. 1b).
(iii) "Sawtooth Waves" - Waves with a linear rate of charige from one value to another, followed by a return or "retrace" to the initial value with negligible transition time compared with the duration of a cycle (Fig. 10).
A. "pulse" is a sudden change of voltage or current of short duration compared with the time scale of interest, with the voltage or current having the same value both before and after the pulse. Pulses are also described according to their shape, so we have rectangular pulses, and sawtooth pulses (Fig. 2).

(a) Rectangular Fiave.

(b) Square Wave.

(c) Sewtooth Wave.

FIG. 1. WAVEFORMS.
2.2 Polarity. The pulses may be either the sections of the waveform extending positive or extending negative from the normal steady value between pulses and these sections are described as positive and negative pulses respectively. This still applies if the pulse waveform is superimposed on a D.C. signal as in Fig. 2d. Positive pulses are shown in Figs. 2a and b, and negative pulses in Figs. $2 c$ and d.
A positive "pulse train" or sequence of pulses, is changed to a negative pulse train by a phase reversal. This can be produced by a transformer or by a valve amplifier without changing the shape of the waveform except to invert it. The pulse waveform in Fig. 2a is changed to the waveform in Fig. 2c by a phase reversal.

(a) Positive Rectangular Pulses.

(c) Negative Reotangular Puises.

(b) Sawtooth Puises.

(d) Negative Pulses on Positive D.C. Sigmal.
2.3 Transition Time. Practical waveforms do not have "transitions" (changes) that are instantaneous because of the limiting of the high frequency response. Section 3 discusses how the time for the transition depends on the amplitude of the high frequency components that make up the wave. A practical rectangular wave is ofter shaped as shown in Fig. 3, where the pulse has sloping sides. This wave shape is sometimes described as being "trapezoidal".

The time for the transition of a rectangular wave (which includes a rectangular pulse waveform), is an important characteristic. The transition time is specified by either the "rise time" or the "decay time".
(i) "Rise Time" is the time taken for a waveform to vary between 10% and 90% of the final peak to peak amplitude of the transition, unless some other levels are stated. This is designated t_{r} in Fig. 3. The 10% and 90% points are specified as these times are more easily determined than the times where the wave departs from 0 and just reaches 100%.

FIG. 3. TRANSITIONS OR A GGGMATGULAR WAVE.
(ii) "Decay Time" is the time taken for a wavetorm to vary between 90% and 10% of the peak to peak amplitude unless otherwise stated, (t_{d} in Fig. 3). The decay time is often equal to the rise time, but this is not necessarily so.

In many cases the term "decay time" is not used, and instead we speak of the rise time of the leading edge of the pulse and the rise time of the trailing edge of the pulse,

With sawtooti qaves, where the linear transition is the major section of the wave and its limits are normally well defined, the transition times specified are the time for the forward trace and the time for retrace, as designated in Fig. 4.

FIG. 4. BESTGNATIONS OF A SAMTOOTE WAVE.
2.4 "2, Ise Traction" is the time ron the pulae measured at spectifed points on the tremsition. \vec{A} nubes of points are commonly choser. For rectangular pulses, pulse duration ia normily nsastued as the interval between the end of the rise time and the start of the decay time; i.e. the time for the phase measured at apuroximately the maximumalitude (t_{1} in Rig. 5). In some ceacs, honever, the duration is specified from the start of the rise tine to the end of the decay time with the transition times considered as part of the pulse duration.

FTG. 5. PUTSE CHARAOTRRISTIGS.
Another point used for measurement of auration is at half the pulse peak-to-peak amplitude (t_{3} in Fig. 5). This thae is the pulse "half amplitude duration" (h.a. . . .) Specification of the pulse h.a.k. is anetimes used for rectangular pulses, but is more userul for measuring the duration of pulses where the transition time of the pulse is almost the same as the pulse duration. An example of this designation in practice is for specifying the duration of the "sine squared pulse" considered in the paper "Video Test Signals",
2.5 "Pulse Spacing" (sometimes known as "Fulse Perion" or "Puise Repetition Rime" (P.f.t.j), is the time between correspording points on tro consecutive pules (t_{2} in Fig. 5).

The same value is obtained independent of which point is taken.
Related to the puise spacing is the "Puise Repetition Frequenct" (P.R.F.), which is the number of times the puise re-occurs per second, i.e.

$$
\text { P.R.F. }=\frac{1}{\text { Puise Spacing }}=\frac{1}{\frac{1}{2}^{2}} \text {. }
$$

2.6 Combining the pulse spacing and the pulse duxation we have the "Pulse Duty Factor". The "Pulse Duty Factor" is the ratio of the pulse duration to the pulse spacing, i.e.

$$
\text { Pulse Duty factor }=\frac{\text { Pulse Quration }}{\text { Pulse spacing }}=\frac{i_{1}}{t_{2}} .
$$

Notice that this is also equal to the pulse duration times the pulse repetition frequency.

$$
\begin{aligned}
\text { Pulse Duty Factor } & =\text { Pulse Buration } X \text { P.R.F. } \text { since } \\
& \frac{1}{\text { Pulse Spacing }}=\text { P.R.F. }
\end{aligned}
$$

Sometimes "Mark-to Sgace Ratio" is used to define the ratio of pulse duration to the time from the conclusion of one pulse to the start of the next. Therefore, in Fig. 5,

$$
\text { Mark-to-Space Ratio }=\frac{t_{1}}{t_{2}-t_{1}} .
$$

The preceding definitions have been applied to rectangular pulses, but where applicable are also used to describe other waveforms.

3. EREQUENCY SPBCTRUM.

* 3.1 Square Maves. Complex waves can be considered as being formed by the algebraic sum of a large number of component sine waves. One way of examining a circuit conmected With pulses is to consider the comporeat frequencies of the wave, and then exambe the effects of the amplitude-frequency and phase-frequency responens of the cirouits, on these component rrequencies.

In the paper "Waveforms, Timing and Oscillatory Circuits of Applied Pleotricity z^{4} it is shown that s square wave is composed of a fundamental and a number of odd barmonios. All odd baxmons to infinsty must be added in the correct phase and with the correct amplitude, to construct a perfect square mave, although in practioe the highen order harmonics con be neglected as they become small and insignificant in amplituce.

To obtain the desired rosult, components mast 211 be zero and increasing at the same time (A in Fig. 6a) and the amplitudee mast be acoording to the reciprocal of the order of the harmonic. Thet is, a square wave is composse of:

- the fundamertal.
- the thiri harmonic Fith $1 / 3$ the ampitude of the Sundaxental,
- the fifth barmonic with $1 / 5$ the ampitude of the fundamental,
- the seventh harmonic mith $1 / 7$ the amplitude of the fundamental, and so on

Fig. 6e ahows the funcanental and the phase and amplitude relationshios of the 3 a and 5 th harmonios. The sum of the required harmatos up to the 5 th, the tith and the 21 st is shom in Pigs. 6b, 2 and d respectively.

As the hisher froquencies are adad the rise time of the transitions decresees and the mumber of zaples in the resuitant increases. The frequenoy of the Fipples ar "ringing is the same as the frequency of the highest oxder bamonic troinded. Adong further hamomics causas the ringing to be confined more to the sectione of the weveform adjocat to the transitions. The rolethonehty botweon the mequest frequency present and the rise time of the resultart vavorom is givell in para. 3.6 .

PAGE 6.

It is convenient to show the frequencies contained by a complex waveform by plotting the magnitude of the components on a frequency scale as shown in Fig. 7 for the square wave.

The fundamental and the 5 th harmonic are drawn with a positive sign and the 3rd and 7 th hamonics with a negative sign to indicate theip phase relationship at a convenient reference time. The phase relationship is confirmed by examining Fig. 6, which shows that, at the time the fundamental is at a positive maximum the 5 th harmonic is also at a positive maximum, and the 3 rd harmonic is at a negative maximum. This means that at the reference time aiternate hamonics are of opposite phase. The resultant voltage at this instant is equal to the algebraic sum of the peak amplitudes of the components, that is Fundamental minus 3 ad harmonic plus 5 th harmonic.
3.2 Short Duration Pulses. For television and many other applications, a major interest is in rectangular pulses with a small pulse duty faotor. Consider a pulse train in which the pulse repetition frequency is $1000 \mathrm{c} / \mathrm{s}$ and the pulse duty factor is $1 / 4$. In this case, the pulse duration is $250 \mu \mathrm{~s}$ (Fig. 8a).
The frequencies required to produce such a pulse are tabulated in Table 1 and shown graphically in Fig. 8b.

Frequency	Amplitude relative
Fundamental $(1000 \mathrm{c} / \mathrm{s})$	1
2nd Hamonic $(2000 \mathrm{c} / \mathrm{s})$.707
3 rd Harmonic $(3000 \mathrm{c} / \mathrm{s})$.333
4 th Hamonic $(4000 \mathrm{c} / \mathrm{s})$	No Amplitude
5th Harmonic $(5000 \mathrm{c} / \mathrm{s})$.2
6th Harmonic $(6000 \mathrm{c} / \mathrm{s})$.236
7th Harmonic $(7000 \mathrm{c} / \mathrm{s})$.143
8th Harmonic $(8000 \mathrm{c} / \mathrm{s})$	Ho Amplitude
etc.	

TABLE 1. FREQUENCY COMPONEITS OF A PULSE.

FIG. 8. FREQUIENCY SPECTRUM OF A PULSE.

By joining the amplitudes of all the components shown for the pulse on the frequency scale (Fig. 8b), the values are seen to follow the shape of a "damped sine wave" with zero amplitudes for the components at regular intervals of frequency. The first zero is at the harmonic corresponding to $\frac{1}{\text { pulse duty factor }, \text { which is at a frequency }}$ corresponding to $\frac{1}{\text { frequency. }}$ pe duration. Further zeros occur at multiples of this first frequency.

In the case with a duty factor of $1 / 4$, the 4 th hamonic and the 8 th, 12 th and $16 t h$, eto., have no amplitude. Therefore, with a pulse duration of $250 \mu 5$, the first zero is at a frequency of $\frac{106}{250} \mathrm{c} / \mathrm{s}$, or $4000 \mathrm{c} / \mathrm{s}$.

As Well as the sine wave components there may be a D.C. component required to construct the pulse train. This can also be inciuded in the draving of the pulse frequency spectrum by showing a component at zero frequency. The D.C. component magnitude depends on the position of the rero axis of the pulse train and is considered in Section 4.

The fundamental and the harmonics up to the fifth are plotted in Fig. 9a. Note that the fifth harmonic reaches a negative maximum at the same time as the fundamental is a positive maximu as indicated by the phase reversal of this component in the frequency spectrum in Fig. 8b.

The resultant waveform in Fig. 90 is produced by adding all components up to the 8th harmonic. The higher order components are not included in Fig. 9 a, as they mould confuse the diagram. The resultant shows a resembiance to the desired pulse even with this small number of components.

(a)

TIME - - \quad ?
(0
3.3 Ixtending the obsemptione of couronent frequency amplituden of waveforms to stiv dorter

 zero amplitude, and there are components every $1000 \mathrm{~s} / \mathrm{s}$ nepresenting eash of the harmonios. The hamonios have amplitudes as zndicated by the figure, and these amplitudes bave been calculated and expressed reletive to tho amplitude of the pulse.
A fus pulse with a D.R.R. of $1000 \mathrm{c} / \mathrm{s}$ hes a spectrum as in Fig. 10 b , with the 1000 th hamonic (1Mc/s oomponent) of zero amplitudes and components at $1000 \mathrm{~s} / \mathrm{s}$ intervals.
Compering the two spectmas shoms that ar the same pulse ampltude and pulse repetition frequonoy, the firgt zero fox the zur pulse ocous at belt the freguenoy of the firet zero Ion the ins pulse, but the low trequancy components or the $2 \mu \mathrm{~s}$ pulse bave twioe the amplithate of the comesponding components of the ths pulse.
\therefore further comparison of two puise spectman in E ig. 10 b and o with a lus pules in each oase but with a $1000 \mathrm{c} / \mathrm{g}$ P.R.R. in one case and a $500 \mathrm{c} / \mathrm{s} \mathrm{P}$.R.F. in the other case, shows that as the formila steted (frequency of fat zero $=\frac{1}{\text { pulse duration }}$) the first zero is independent of the pulse repetition frequency and is only dependent on the pulse duration. The components are spaced $500 \mathrm{c} / \mathrm{s}$ epart in the lower P . R. Fi case compered mith $1000 \mathrm{c} / \mathrm{s}$ in
 case is half the amplitude of the corresponding componente in the $10000 / \mathrm{s}$ example. The shapes of all the spectrums for rectangular pulses in fig. 10 are the same, only the scale has varied.

ETG. 10. FREQUMUCY SPECTRUSS FOR SHORT DURATTON PULEES.

Sumarising, Fig. 10 shows that the components of the rectangular sigral are spaced at frequency intervals equal to the repetition frequency of the pulses, and that the amplitude falls to zero at a frequency equal to $\frac{1}{\text { pulse duration }}$ and multiples of that frequency, independent of the pulse repetition frequency.
3.4 Transient Pulses. Consider that the repetition rate is decreased to the extreme. Only one pulse is produced and no other disturbances occur from an infinite time before ($-\infty$) to an infinite time after ($+\infty$) as shown in Fig. 11a. The shape of the spectrum is ths same as before with the components falling to zero at a frequency equal to $\frac{1}{\text { pulse duration }}$, but as the repetition frequency is actually zero, there is no space between the components. That is, all frequency componenta enclosed by the "damped sine wave" shape are present (Fig. 11b). As can be expeoted, the amplitude of each component is reduced. because there are so many components combining to produce tio final amplitude.

FIG. 11. GREQUENCY SPECTRUN OF A TRANSTENT PULSE.
3.5 Infinitely Short Puises. In a theoretical case of decreasing the length of the pulse se that its duration is infinitely small (Fig. 12a), the first zero in the frequency spectrum of the pulse is increased to infinity. In other words there is no zero, and the amplitude of the components is constant at all frequeroiss as shown in Fig. $12 b$. This condition is approached in a practical case when the band of frequencies of interest has a high frequency limit that is much lower'in frequency than the first zero of the pulse spectrum. When this occurs, component frequency amplitude are almost constant throughout the bandwiath of intersst.

FIG. 12. FREQUENCY SPECTMUM OF A PULSE OF ZARO DURATOIS.
3.6 Rise Time. In proctice we are more interested in pulses with a finite rise time. It is necessary to know the bandwidth that is required to transmit a pulse with a specified rise time without degradation, and what is the fastest rise time that is possible when a pulse is passed through a system with a limited bandwidth.
Inspection of the frequency spectrur of the short duration rectangular pulses considered shows that the majority of the energy present in the components of the spectrum is at lower frequencies than the first tero. If oniy these frequencies are transmitted the pulse can still be identified as being present out its rise time hs very poor. To produe a pulse mith g rise time that is sman compare rith the puise duration, meny higher frequency components are required.

Consiaer a simple "trapezoidal" \#aveform as in Fig. 13a. The ampiitudes of the frequency components for this pulse trair are dependent on both the half amplitude duration and the rise time of the pulse. There is a zero in the frequency spectrum at a frequency equal to $\frac{1}{\text { pulse h.a.d. }}$ and also at a frequency equal to $\frac{1}{\text { pulse rise time }}$. Normally, the rise time is much shorter then the pulse duration and so the first zero in the spectrum caused by the pulse duration is at a much lower frequency than the first zero caused by the pulse rise time.
To produce a pulse with a finite rise time, frequency components up to half the frequency of the first zero in the spectrum caused by the rise time must be included.

$$
\begin{array}{lll}
\therefore \text { Highest frequency of a reciangular pulse }=\frac{1}{2}-\frac{1}{2} \text { risa time } \quad \text { where } \quad \begin{array}{l}
\text { frequency }=\mathrm{c} / \mathrm{s} . \\
\text { rise time }=\text { secs } .
\end{array}
\end{array}
$$

Any system capable of transmitting a pulse with negligible change of rise time must pass frequencies to $\frac{1}{2 \times \text { rise time }}$.

The spectrum zero that is caused by the rise time is independent of any changes in the spectrum caused by the pulse duration, so that when the pulse duration is greater than the rise time, the frequency band required to pass the pulse with negligible degradation, depends only on the rise tirne. The same bandwidth is required for a short duration pulse as for a single step between two levels, if the rise time is the same in each case.
Although the pulse consists of many frequencies, in a simple consideration the highest frequency can be thought of as causing the shape of the pulse transition. In Fig. 13b, the total transition time is a half cycle of a sine wave at approximately the highest frequency passed by the system.

FIG. 13. PULSE OF FINITE RISE TIME.
If the time for this half oycle is t secs., the time for a full cycle is $2 t$ secs., and the highest frequency that is responsible for the transition is $\frac{1}{2 t} \mathrm{c} / \mathrm{s}$. Considering the rise time as approximately t secs., the highest frequency required frow the formula is $\frac{1}{2 t} \mathrm{c} / \mathrm{s}$. This coincides with the frequency representing the transition in the simple example. There are components present at higher frequencies, but for practical pulses of finite rise time, they are small in acrpitude.
As an example, the highest frequency component of any importance that is present in a pulce with a $0.1 \mu \mathrm{~S}$ rise time is -

$$
\text { Highest frealency of pulse }=\frac{1}{2 \bar{x} \text { rise time }}=\frac{1}{2 \times 0.1} \mathrm{Mc} / \mathrm{s}=5 \mathrm{Mc} / \mathrm{s} \text {. }
$$

Relating this to the amplitude-frequency response of a circuit, if an ideal rectangular pulse is passed through a circuit and the output pulse rise time is $0.1 \mu \mathrm{~S}$, the bandwidth of the circuit is approximately $5 \mathrm{Mc} / \mathrm{s}$, and conversely, if the circuit bandwidth is $5 \mathrm{Mc} / \mathrm{s}$ the output pulse rise time is $0.1 \mu \mathrm{~S}$ (Rise Time $=\frac{1}{2 \times \text { Highest Frequency }}$). These statements are only approximate as the actual shape of the output waveform depends on the shape of the amplitude-frequency and phase-frequency responses, particularly near cut-off.
3.7 Sawtooth Waveforms. A sawtooth wave contains sine wave components including all harmonics of the fundamental repetition frequency, with phase relationships as indicated in Fig. 14a. Examining the phase relationship at time A, the fundamental and odd harmonics are positive going and the even harmonics are negative going. At time B, all components are negative going and the combination of the componerts at this time is responsible for the repid retrace of the sawtooth. The amplitudes of the harmonics are the inverse of their order, i.e. the 2nd harmonic is half the amplitude of the fundamental and the 100 th harmonio is 1% of the fundamental.

As more components are included in the resultant, the waveform produced aporoaches closer to an ideal sawtooth. Examples in Fig. 14 b include components to the 5 th and 13th harmonics only. Consequently, the linear forward trace of the sawtooth contains ringing, particularly at the ends, and the retrace time is not zero.

FYG. 14. COMPGUATS OF A SAWTOOTH WAVE.
The departure of the formard trace from being lineax is of majur importance and for this section of the ware to be satisfactory, hamonios 0 arrarimately the 50 th must

 high gear volvages will be gererajed i\% inductive cirouits.

INTRODUCTION TO PULSE TECHNIQUES. PAGE 12.
4. D.C. COMPONWN.
4.1 A direct current component is present in a wave when more electrical energy is transferred in one direction than in the opposite direction. This means that the average of the algebraic sum of the instantaneous values of the wave is not zero. For some applications, the D.C. componert of a waveform conveys important information. One particular case is for the correct reproduction of a television picture. The B.C. component of video signsls is considered in Section 4 of the paper "Composite Video Signals".

The sum of the instantaneous values of a wave gives a result that is proportional to the area enclosed by the wave and the zero axis. With an A,0. signal, the average of the instantaneous values is zero. This is sbown for sine, square, and sawtooth waves in Figs $15 a, b$ and c, where the area above zero equals the area below zero. In Figs. 15d, e and f, the sane waveforms have a D.C. component added and this is verified by examination of the areas of the positive and negative sections of each mave. Fig. 15 has a positive D.G. component to the extent that never at any time is the wave negative, Fig. 150 has a resultant positive D.C. omponent, and Fis. 15 t has a resultant negative D.C. component.

FIG. 15. WhVIFORMS WITY AMD WITHOUT D.C. COMPONENT.
4.2 Magnitude of D.C. Component. The average of the instanteneous values of a wave is actually the magnitude of the D.C. component of the wave. Consider a positive rectangular pulse train with an amplitude of 10 Volts as in Fig. 16a. The wave has no negative section and the area of the positive section is $10 \times 1 t$. This is the only section of the wave that has any magritude for one complete cycle or a time of $8 t$, therefore dividing the area by $8 t$ gives the average amplitude over a cycle. As the cycles are repetitive this is also the average for the complete mave.

$$
\begin{aligned}
\therefore \text { The average amplitude } & =\frac{10 \times 1 \mathrm{t}}{8 t} \\
& =1.25 \text { Voits }=\text { The D.C. Component Amplitude. }
\end{aligned}
$$

To prove that this is the avarage value of the mave, consider the areas of the wave ebove and below the 1.25 roit average ine as in Fig. 160 .
$\begin{aligned} \text { The area aboye the ayerage } & =3.75 \times 1 t \\ & =8.75 \mathrm{t} \\ \text { The area below the ayerage } & =1.25 \times 7 t\end{aligned}$
$=8.75 t=$ area above average.
The signal then can be divided into a D.C. component of 1.25 V and a rectangular A.C. oomponent with peaks of amplitude at -1.25 V and +8.75 V (Figs. 16 c and d).

FIC. 16. WAVEFORM DIVIDED TMTO COMPONBNTIS.
A general formula for calculating the D.C. component or average value of a signal is -

$$
\text { Average Amplitude }=\frac{\text { Positive Area }- \text { Hegative Area }}{\text { Total Time }}
$$

This formia is used in the following examples and applies independent of whether the resultant component is positive on negative. In example (2) where the signal is always negative, the complete area is caloulated by considering sections of the total area that have convenient shapes.

FIG. 17. WAVEFORMS WITH D.C. COMPONENT,

Example 1. What is the value of D.C. component for the aignal in Fig. 17a?

$$
\text { Positive Area of one cycle }=10 \times 52 \text { units }
$$

$=520$ units.
Negative Area of one cycle $x \div 5$ units
$=20$ units.
Ayerage Voitage (0.6. Compenent) $=\frac{520-20}{64}$
$=+7.8 \mathrm{Volts}$

Example 2. Calculate the average value of the waveform in Fig. 17 b .

> Positive Area $=0$
> Negative Area $=A r e a \operatorname{ABCD}+$ Area DEF
$=(20 \times 100)+\left(\frac{10 \times 50}{2}\right)$ units
$=2000+250=2250$ units.
Average Voltage $=\frac{\text { Positive Area }- \text { Negative Area }}{\text { Total Fime }}$

$$
=\frac{0-2250}{100}
$$

5. PEETSTOR-GAPACTTOR CIRCUTTS.
5.1 Voltage Variation with Pime. In Section 3, the frequercy components of palses were exmined. The main use for this information is in sonsidering the bandwidth required to transmit pulses. Examination of pulse circuits by considering the frequency components and the responses of associated circuits is difficult and usually ends up as a mathematical treatment which i.s not useful as a simple explanation.
Pulse techiques generally rely on the time for charge and discharge of capacitors and inductors associated with resistors. The majority of pulse circuits, then, are more easily explained by considering each pulse as a change in the D.C. voltage apolied to the circuit, and by considering the charge or disoharge that occurs because of the voltage change. The voltage or current in the circuit is therefore considered on a time scale.

In this paper, and in other pepers where a distinction is required, capital letters are used as symbols to designate fixed values such as the supply voltage (Es). Lower case letters are used as symbols for quantities that are varying with time; for example, the instantaneous voltage acroas a capacitor is designated ec.
5.2 Charge of Capacitor. When a source of e.m.f. is connected to a circuit consisting of a resistor and an uncharged capacitor in series (Fig, 18a), the capacitor does not charge instantiy to the supply voltage (E_{S}). At the instant of connection, the voltage across the capacitor is zero as ith has no charge, and the voltage across the resistor is equal to the supply voltage. The current through a resistor is always equal to the P.D. across it, divided by its resistance, therefore the initial current in the circuit is equal to $\frac{E_{S}}{R}$. As current flows, a charge is built up in the capacitor, the quantity of charge (Q) being dependent on the current and the tirae $(Q=I t)$.
5.3 Exponential Charge Curves. In the circuit considered, the charging current camot continue at its initial rate. As the current charges the capacitor, a voltage is developed across the capacitor, and the voltage across the resistor decreases to the same extent. The resistor voltage at any instant (e_{R}) is the difference between the supply voltage and the capacitor voltage at that instant $\left(e_{C}\right) ;\left(e_{R}=E_{S}-e_{C}\right)$. The charging current therefore also decreases and the charging current at any instant is $i=\frac{\mathrm{ES}-\Theta_{C}}{R}$. The decrease in the charging curcent causes a slower rate of increase of voltage on the capacitor.
The change of the values of current and voltage in the circuit is shown in Fig. 18b. These curves have a shape that is described as exponential. The current (i) is at its maximum value (I_{M}) and equal to $\frac{E_{S}}{R}$ at the instant the circuit is completed, and as the capacitor charges, the current gradually decays towards zero. The voltage across the resistor is proportional to current and is equal to the supply voltage when the circuit is first completed, and then decays towards zero. The voltage across the capacitor is initially low and rises exponentially to approach the supply voltage. The charge current in Fig. 18 a is anticlockise in the circuit, and the voltages across the capacitor and resistor have the polarities as shown.
5.4 Time Constant. Independent of the values of the circuit components, the curves of voltage and current against time have the same shape. However, the actual charging time depends on the values of the components, and the scales must be arranged to suit the component values and the supply voltage. When the resistance is increased, the maximum current is reducea, and since $Q=I t$, a Ionger time is required to achieve the same charge. Because 0 OE, inoreasing the value of capacitance increases the Q for a given supply voltage, and therefore also increases the charging time (for any given value of series rasistance).
The product of oxpscitance and resistance (CR) is known as the time constant of the circuit (Symbol - $\tau-T a u)$.

An important feature of the exponential curves in Fig. 18 is that after a time equal to the circuit time constant, ec has increased to approximately 63.2% of the applied voltage change, and e_{R} and i have decreazed by approximately 63.2% to approximately 36.8% of their respective maximum possible changes.

This leads to a practical definition of time constant:-
The time constant of a resistor-capacitor ($\mathrm{R}-\mathrm{C}$) circuit is the time for the capacitor voltage to change by 63.2% of the applied voltage change.
In theory, a capacitor never becomes fully charged, since for equal time intervals the voltage always changes by the same percentage of the remaining voitage which determines the current in the circuit, that is the voltage across the resistor. As an example, if 100 volts is applied to a resistor-capacitor circuit, after a time equal to one time constant $e_{0}=63.2 \mathrm{~V}$ and $e_{\mathrm{R}}=36.8 \mathrm{~V}$.
After a further time again equal to one tj.ne constant, the capacitor voltage has increased by a further 63.2% of the remaining 36.8 volts that is determining the charging current, i.e. 23.26v, and is approximately 86.46 V .
After five time constants, however, the capacitor voltage change exceeds 99% of the applied voltage change and is considered for practical purposes as being completely charged. Values for other charge times are considered in Sections 7 and 8.

(a)

(b)

EIG. 18. CEARGE OF A CAPACITOR THROUGH A PESISTOR.

As a matter of interest, if the initial current could continue, the capacitor voltage would contime to increase at its initial zate and rould be oharged to the supgy voltage in a time equal to the cirouit time constant. This relationship cen be proved as Jollows:-

$$
\operatorname{Initial} \operatorname{carem}(1 \mid y)=\frac{E_{S}}{R} .
$$

When capasitor is charged to E_{S}, $=C E_{8}$.

$$
\begin{aligned}
& =? \\
& =\frac{Q}{E_{j}}=C Z=T
\end{aligned}
$$

5.5 Discharge of Capacitor. Consider that the onpacitor in the oirouit of Fig . 18 a is fully oharged to the supply voltage (B_{S}) and that the source of e.m.f. is removed and replaced by a short circuit as in Fig. 19a. The capacitor voltage is directly across the resistor and causes a current in the circuit in a clockwise direction this is in the opposite direction to the initial charging current, and therefore the voltage across the resistor is also opposite in polarity to the voltage during charging.

The magnitude of current in the circuit at the instant of application of the short is equal to $\frac{G_{S}}{R}$, which is the same as the instantaneous peak of current when the charging voltage was first applied. As current flows the capacitor discharges and the voltage zcross the capacitor, and therefore also across the resistor, reduces. This reduces the value of discharge current, which reduces the rate of fall of the capacitor voltage.

Both the voltage and current in the circuit decay exponentially towards zero as shown by the curves in Fig. 19b. As before, after one time constant the values heve changed by 63.2% to 36.8% of their respective maximum values.

After five time constants the capacitor is, for practical purposes, fully discharged and the discharge current is zero. Fnergy is stored in the capacitor when it is charged, and during discharge this energy is dissipated in the resistor,

(a)

(b)

FIG. 19. DISCHARGE OF A CAPAOIMOR THROUGH A RESISTOR.

5.6 Residual Charge: So far we have considered the charge of a capacitor from zero to a maximum value, and then the discharge back to zero. In many practical applications, neither of the two extremes of voltage on the capacitor are zero.

Consider that the suttch in Pig. 20a is closed for a short period, and then opened and closed again. When the oirouit is first completed the capacitor comences to charge. At the opening of the switch no discharge cirouit is provided and the capacitor voltage is maintained. On the closing of the switch again, the capacitor charge is again increased, and follows exactly the same values that it would have, if the circuit had not been broken (Fig. 20b). The only difference is the displacement in time of the section of the curve by an amount equal to the time of the break. The rate of inorease of charge is dependent on the voltage acting in the circuit at any time, and this is a characteristio of the exponential shape; no matter where the charge recomences on the curve, the remaining section always has the same shape.

FIG. 20. INTERRUPTION OF CAPACITOR CHARGE.
This applies even when the change of voltage on the capacitor undergoes a change of polarity. In Fig. 21a, the capacitor is initially charged to 60 volts. When the switch is closed current flows to discharge the capacitor, and then charge it to 100 volts in the opposite direction. The complete discharge-charge curve is part of one exponential curve and there is no disjointed appearance as the curve passes through the point of zero voltage (no charge) on the capacitor.
At the instant the circuit is completed, the current is determined by the algebraic sum of the sources of e.m.f. present in the circuit. In this case it is 160 volts, as the two voltages present are aiding.
The change of current and voltages in the circuit is shown in Fig. 21b. If the capacitor's initial voltage before the switch is closed (-60 volts) is taken to be the reference voltage, then when the circuit is closed the capacitor charges from this reference to the maximum 160 volts more positive, and the curve is the same shape as in Fig. 18, for the simple example with no initial charge.
The current and the resistor voltage changes are also similar to the simple example, with maximum amplitudes as iff there was no initial charge on the capacitor, and the battery voltage was 160 volts.

In calculations relating to charge and discharge, the change of voltage that is possible in the circuit, that is, the resultant voltage causing the charging current at the time of reference, is more important than the supply voltage of the circuit.

(a)

(b)

FIG. 21. RESIDUAL CHARGE ON CAPACITOR.
6. INDUCTOR-PESISTOR CIRCUITS.
6.1 "Charge" of Inductor. When a source of e.m.f. is connected to a circuit consisting of an inductor and resistor in series as in Fig. 22a, the current does not rise instantiy to the maximum value. At the instant the circuit is completed there is no current, and therefore the voltage across the resistor ($e_{\mathbb{R}}$) is zero. The current attempts to change and a self induced e.m.f. Is developed across the inductor which opposes the applied e.m.f., and limits the initial rate of change of current. To preserve the law that the algebraic sum of the voltages in the circuit must be zero ($E_{\mathrm{S}}=e_{\mathrm{L}}+e_{\mathrm{R}}$), as e_{R} is zero, the voltage across the inductor (e_{L}) equals E_{S}. The rate of change of current at this instant must then be such as to produce an induced voltage equal to the applied voltage.
6.2 Exponential Charge Curves. The increase in current through the inductor cannot continue at its initial rate in this circuit. When current commences, a voltage drop is produced across the series resistor. This means that the voltage across the inductance must decrease ($e_{\mathrm{L}}=\mathrm{E}_{\mathrm{S}}-e_{\mathrm{R}}$). The decrease in e_{L} is because of a reduced rate of change of current, and this causes a reduced rate of rise of voltage across the resistor.

The curves of voltage and current with time are exponential and are shown in Fig. 22 b . The circuit current which is initially zero, increases exponentially towards a maximum value. When it has reached its maximum value, there is no change of current, and therefore no voltage across the inductor. The total supply voltage is then across the resistor and the maximum value of current $\left(I_{\mathbb{L}}\right)$ is equal to $\frac{E_{S}}{R}$. The resistor voltage (er) is proportional to the current, and increases from zero to approach ES. The voltage across the inductor (eL) steps from zero to equal Es when the circuit is first completed, and then decays exponentially towards zero.
Notice that the curve for voltage across the resistor in an L-? circuit is the same as the voltage across the capacitor of an R-C circuit, and the voltage across the inductor in an I-R circuit varies in the same way as the voltage across the resistor in an $\mathrm{R}-\mathrm{C}$ circuit.
6.3 Time Constant. Again, as with the R-C case, the shapes of the curves of voltage and current are independent of the component values, but the actual time for the current in the circuit to rise is determined by the component values, so that suitable scales must be included.

The induced e.m.f. developed across an inductor (e_{L}), is dependent on the rate of change of current and the inductance (L).

$$
\begin{aligned}
e_{L} & =\text { rate of change of current } \times L \\
& =\frac{d i}{d t} L .
\end{aligned}
$$

(This is the basis of the definition of the henry, the unit of inductance. An induced voltage of one volt is produced by current changing at the rate of one amp per second in a coil with an inductance of one henry.)

When the circuit is first completed, $e_{\mathcal{L}}=\mathrm{F}_{\mathrm{S}}$. Therefore, if the value of inductance is increased, the initial rate of change of current must decrease to maintain $e_{\mathrm{L}}=\mathrm{F}_{\mathrm{S}}$ and it takes longer for the current to build up. When the resistance of the circuit is increased, the maximum current possible in the circuit is decreased ($I_{\mathrm{M}}=\frac{\mathrm{ES}_{\mathrm{S}}}{\mathrm{R}}$), and for a given value of inductance and supply voltage, it takes a shopter time for the current to approach its maximum value.
The ratio of inductance to resistance $\left(\frac{L}{R}\right)$ is known as the time constant (τ) for inductor-resistor ($I-R$) circuits.

$$
\text { In an inductor-resistor circuit } \quad 7=\frac{L}{R} \quad \text { wheny } \quad \begin{aligned}
T & =\text { time constant in seconds } \\
L & =\text { inductance in herpies } \\
R & =\text { resistance in ohns. }
\end{aligned}
$$

In Fig. 22b, after one time constant, eL has reduced by 63.2% to 36.8% of its maximum value, and e_{R} and the current in the circuit (i) have increased to 63.2% of their respective maximums.

The practical definition of time constant for L-R circuits then is -

The time constant of a circuit containing inductance and resistance is the time for the current in the circuit to change by 63.2% of its maximum change.

As with R-C circuits, the changes of voltage and current in the circuit are considered as being completed after five time constants.

(a)

FIG. 22. "CHARGE" OF AN INDUCTOR THROUGH A RESISTOR.
For interest, if the initial rate of increase of current could continue, it would reach the maximin value in a time equal to the time constant. This relationship can be proved as follows:--

$$
\begin{aligned}
& e_{L}=\frac{d i}{d t} L \\
& \therefore \frac{d i}{d t}=\frac{e L}{L} \\
& \text { Initial voltage across inductor }=E_{S} \\
& \therefore \text { Initial rate of change of current }=\frac{E_{S}}{L} \\
& H=\frac{E_{S}}{R} \\
& \therefore \text { Tine }(t) \text { to reach the maximum value } i n=\frac{1 /}{\text { rate of change of current }} \\
& =\frac{E_{S} L}{P E_{S}}
\end{aligned}
$$

6.4 "Discharge" of Inductor. When a current is passing through an inductor, energy is stored in the magnetic field produced. Consider that the source of e.m.f. is removed and replaced by a short circuit without breaking the circuit (Fig. 23a). The inductance opposes any change of current in the circuit and if no losses were present the current would continue. With resistance in the circuit, energy stored in the magnetic field is dissipated in the resistance, and the magnetic field and current producing it gradually fall to zero.
At the instant the discharge circuit is completed, the current is still I_{M}, so that the voltage across the resistor is still equal to ES. This voltage is the induced voltage produced by the current attempting to change in the induotor, but as the inductor is now the source of e.m.f., the voltage is of opposite polarity to the voltage during the build up of the magnetic field as shown in Fig. 23a, and therefore $e_{\mathrm{L}}=-\mathrm{Bg}_{\mathrm{S}}$. To produce a voltage across the inductor with the required polarity and magnitude, the current in the circuit must be decreasing at the same rate as it increased during charging, that is, if the initial rate of change is continued the current will be zero in one time constant.

However, the initial rate of change cannot continue, for when the current decreases there is less voltage drop across the resistor, and therefore less induced voltage across the inductor. This reduction of inductor voltage is caused by a reduced rate of change of current. Fig. $23 b$ shows the discharge curves, which are again exponential, decreasing from their maximum values to 36.8% in one time constant, and reaching a practical zero in five time constants.
(When an inductive circuit is opened, and not first shorted, the series resistance in the circuit becomes infinite, and therefore the time constant ($\frac{L}{R}$) of the circuit during the collapse of the magnetic field, is zero. That is, the initial rate of change is infinite and so the induced e.m.f. is infinite. In practice, the voltage increases instantly to the extent that it is able to arc across the opening contacts and the energy stored in the circuit is dissipated in the arc and the circuit resistance.)
6.5 Initial Current. We have considered the change of current in an inductance from zero to a maximum and back to zero. In the inductive circuit there may be some initial current and any variation of this current through a resistance follows the exponential shape in the same way as examined for voltage in a capacitive circuit. In these cases we are interested in the change of current rather than the actual value of current.

(a)

FIC. 23. DISCHARGE OF AN INDUCTOR THROUGH A RESISTOR.
7. UNTVERSAL TIME CONSTANT CHART.
7.1 An observation of the curves for charge and discharge of capacitors and inductors shows that all changes of current and voltage in the circuits have an exponential shape, and follow two basic curves -
(i) The magnitude of voltage or current decreases from either a positive or a negative maximum value, quickly at first, and then at an increasingly slower rate as it approaches zero or the reference value.
(ii) The magnitude of voltage or current increases quickly at first and then at an increasingly slower rate as it approaches a maximum value which is either positive or negative.

A universal time constant chart is drawn in Fig. 24, which includes the two curves required. The horizontal scale of time is related to the time constant of the oirouit, and calculations are made by relating actual time to the circuit time constant as calculated. from the formulae $\tau=C R$ or $\tau=\frac{L}{R}$. The vertical scale is calibrated so that at any time the voltage or current is indicated as a fraction of the maximum voltage or current. The actual value of voltage or current at the instant required is then found by multiplying the maximum value by the factor determined from the correct curve on the graph, for the time required. With the chart, calculations with accuracies to two significant figures are possible, and examples are worked in paras. 7.2 and 7.3 to indicate how the chart is used.

When considering charge and discharge, we found that the sum of the voltage drops across the components at any instant is equal to the applied voltage. Here also the sum of the instantaneous values of curve "A" and curve " B " equals the maximum value of unity.

PAGE 22.

7.2 The following examples set out typical ways of solving proolems associated with $\mathrm{R}-\mathrm{C}$ and $\mathrm{L}-\mathrm{R}$ circuits, and make use of the universal time constant chart.

Example 3. In the circuit of Fig. 25a, find the value of voltage across the resistor after the switch has been closed for $250 \mu \mathrm{~S}$.

(a)

(b)

FIG. 25. R-C CIRCUIT FOR EXAMPLE 3.

(1) Estimate the shape of the required curve. When the circuit is completed the resistor voltage immediately steps to 80 Y and then decreases exponentially towards zero as in Fig. 25b. This shape corresponds to curve A of the universal time constant chart.
(ii) Calculate the time constant of the circuit -

$$
\begin{aligned}
\tau & =C R \\
\tau & =0.01 \times 10^{-6} \times 10^{4} \times 10^{6} \mu \mathrm{~S} \\
& =100 \mu \mathrm{~S} .
\end{aligned}
$$

(iii) Express $250 \mu \mathrm{~s}$ as a time (x) relative to the circuit time constant -

$$
\begin{aligned}
x & =\frac{t}{\tau} \\
& =\frac{250}{100}=2.5 \text { time constants. }
\end{aligned}
$$

(iv) Read off the factor on the vertical scale corresponding to 2.5 time constants and curve A, i.e. approximately 0.08 .
(v) Caiculate the voltage -

$$
\theta R=0.08 \times 80=6.4 \mathrm{~V}
$$

Answer:- Voltage across resistor after 250us $=6.4 \mathrm{Y}$.
Example 4. A capacitor is charged so that the output voltage is -160 V with respect to earth as in Fig. 26a. When the switch is closed the output voltage reaches -40 volts in $7.2 \mu \mathrm{~S}$. What is the value of the resistance in the circuit?

(a)

$T \| M E=$

The capacitor charge is changing from a reference voltage of -160 volts to +240 volts as in Fig. 26 b . At the instant the circuit is completed, the e.m.f. acting in the circuit, and therefore the maximum change of voltage possible is -

$$
E_{A}=160+240=400 y .
$$

The change from the reference to $-40 V=+1204$.
This change expressed as a fraction of the maximum change $=\frac{120}{400}=0.3$.
From curve B of the universal time constant chart, the change takes place in a time of approximately 0.36 time constants.

$$
\begin{aligned}
\therefore \begin{aligned}
7.2 \mu S & =0.36 \text { time constants } \\
\therefore \text { The circuit time constant } & =\frac{7.2}{0.36}=20 \mu S . \\
\therefore R & =\frac{T}{C} \\
& =-\frac{20 \times 10^{6}}{10^{6} \times 0.002} \\
& =10,000 \Omega \\
\text { Answer:- Circuit resistance } & =10,000 \Omega .
\end{aligned} \$=\text {. }
\end{aligned}
$$

Fxample 5. A relay with e resistance of 1000Ω and an inductance of 5 henries will operate when 20 mA of current flows through the coil. How long will it take for the current to increase to the operate value after the relay is connected to a 50 volt supply?

FIG. 27. L-R CIRCUIT FOR EXAMPLE 5 .

The current rises exponentially to a maximum with a shape as in Fig. 276.

$$
\begin{aligned}
I_{H} & =\frac{E_{3}}{R} \\
& =\frac{50 \times 10^{3}}{10^{3}}=50 \mathrm{~mA} .
\end{aligned}
$$

$$
\text { Fraction of } 14 \text { required to cause operation }=\frac{20}{50}=0.4 \text {. }
$$

From curve B of the universal time constant chart -
Time to reach 0.4 of \mathbb{H} ax $=0.51$ time constant.
$\tau=\frac{L}{R}$
$=\frac{5 \times 10^{3}}{10^{3}}=5 \mathrm{~m}$.
\therefore Tine for current to reach $20 \mathrm{H} . \mathrm{A}=0.51 \times 5=2.55 \mathrm{rs}$.
7.3 The following example illustrates a more involved calculation of a type likely to be encountered in practice.

Example 6. The switch in Fig. 28 is moved to position 2 for 10 ms and then returned to position 1 for 10 ms . The switching cycle is then continued at this regular rate. The time for each change-over is negligible.

Calculate the voltages present immediately before and after each switch operation, and draw graphs for the first two switching cycles (40 ms) showing -
(i) Input voltage to the network (ein) against time, and
(ii) Output voltage from the network (eout) against time.

(a)

Indicate the calculated voltages on the graphs.

FIG. 28. CIRCUIT FOR EXAMPLE 6.

FIG. 29. ANSWER TO EXAMPIE 6.
(1) When the switch is in position 1, ein is zero and in position 2, ein is 10V. Ffter the first operation foms is spent in each position and the graph of $\mathrm{ein}_{\mathrm{n}}$ is as in Fig. 29a.
(ii) The time constant for both charge and discharge is $20 m S(\tau=C R)$. When the switch is in position 2 , the capacitor charges for 10 mS and when in position 1, the capacitor discharges for 10 m . Therefore, the charging time and the discharging time per cycle is each 0.5 time constants. Therefore in each 10ms, from curve A of the universal time constant chart, $e_{\text {out }}$ falls to approximately $0 . \hat{0}$ of the voltage present at the start of this time.

When switch is first operated to position 2, there is no charge and therefore no voltage across the capacitor.

$$
\begin{aligned}
& \therefore e_{\text {out }}=+10 V . \\
& \text { After } 10 \mathrm{mS}, \quad e_{\text {out }}=0.6 \times 10 \\
&=+6 V . \\
& \therefore e^{e} \mathrm{C}=4 V \cdot(\text { Polarity as in } \\
& \text { Fig. 28) }
\end{aligned}
$$

Switch changes back to position 1.

	$\theta_{\text {out }}$	$={ }^{e} \mathrm{C}$
		$=-4 V$.
After 20 ms ,	cout	$=0.6 \times-4$
		$=-2.4 \mathrm{~V}$.

Switch changes to position 2 again.
The algebrate sum of the e.fnof's. in the circuit
$=10-2.4$
$=+7.6 \mathrm{~V}$.
$=e_{\text {out }}$
After 30 ms ,

$$
\begin{aligned}
\text { eout } & =0.6 \times 7.6 \\
& =4.56 \mathrm{~V} . \\
\therefore e_{G} & =5.44 \mathrm{~V} .
\end{aligned}
$$

Switch changes to position 1 again.

After 40ms,

$$
\text { After 40mS, } \quad \begin{aligned}
\therefore e_{0 u t} & =-5.44 \\
e_{\text {out }} & =0.6 \times-5.44 \\
& =-3.264 \mathrm{~V} .
\end{aligned}
$$

The output voltage ($e_{0 u t}$) is as in Fig. $29 b$ and is shown on a common time scale with ein.
8. EXPONENTIAL FUNCTIONS.
8.1 For more accurate calculations of the state of charge of a capacitor or inductor, the factor derived from the universal time constant chart can be obtained from tables of exponential functions. Even when the additional accuracy is not required, it is often more convenient to read a value from tables, than to estimate it from a graph by projecting the point on the graph to the two scales.
8.2 Exponential Formulae, The description of the charge and discharge curves as
"exponential" suggests that their shapes are dependent on the exponent of a number, that is the index or the power to which a number is taken. The formulae describing the shape of the curves of the universal time constant chart are related to powers of the base of Napierian or natural logarithms (ϵ).
Curve A in Fig . 24 is obtained by plotting the results obtained by substituting values for x in the formula.

$$
\begin{aligned}
y_{A} & =\epsilon^{-x} \\
\text { that is } \quad y_{A} & =\frac{1}{\epsilon^{x}}
\end{aligned}
$$

In our application, y becomes the fraction of the maximum amplitude or the vertical scale, and x is the time expressed in time constants or the horizontal scale of the resulting curve.
When we substitute $\mathrm{x}=1$, the result gives the fraction of the mazimum after one time constant.

$$
\begin{aligned}
y_{A} & =\varepsilon^{-1} \text { or } \frac{1}{\epsilon^{1}} \\
& =\frac{1}{\epsilon} \\
\text { value of } \epsilon & =2.11828 . \\
\therefore y_{A} & =\frac{1}{2.17828} \\
& =0.3679 .
\end{aligned}
$$

$$
\text { The value of } \epsilon=2.71828
$$

This agrees with the value obtained from curve A after one time constant.
To find the value after two time constants we substitute $\bar{x}=2$.

$$
\begin{aligned}
\therefore y_{A} & =\epsilon^{-2} \text { or } \frac{1}{\varepsilon^{2}} \\
& =\frac{1}{2.71828^{2}} \\
& =\frac{1.3}{7.399} \\
& =0.1353 .
\end{aligned}
$$

Checking this against Fig. 24 shows that the curves agree to the accuracy possible. The sum of the instantaneous values of curves A and B in Fig. 24, is equal to the maximu value of unity on the scale for the graph, so that the formula for curve B is obtained by subtracting the formula for curve A from 1.

$$
\begin{aligned}
\text { i.e. } y_{B} & =1-\epsilon^{-x} \\
\text { or } y_{B} & =1-\frac{1}{\epsilon^{x}} \\
\therefore \text { When } x=2, & \text { from the previous example - } \\
\epsilon^{-2} & =0.1353 \\
\therefore y_{B} & =1-0.1353=0.8647 .
\end{aligned}
$$

This again agrees with the universal time constant chart.
8.3 Table of Exponential Functions. When making calculations it is likely that the time of interest has no simple relationship to the time constant. It may be, for example, a time equal to 2.4 time constants. This makes the value of $e^{-2.4}$ harder to calculate. For convenience, tables are available which normally include values for ϵ^{X} and ε^{-x} for various values of x to approximately 6. Some tables of exponential functions include in addition to the above, a column with values of $1-\epsilon^{-x}$. This makes it more convenient to find the values on curves that are increasing exponentially towards a maximum value.

An example of a section of a table is shown in Table 2. To find the multiplying factor to determine a value after 2.4 time constants from the initiation of the change for an exponential curve which is approaching zero, we locate $x=2.4$ and read off $\epsilon^{-\mathrm{x}}=0.0907$.

To find the time for a curve to increase exponentially from zero to, for example, 20% of the maximum value, we look for 0.2 in the $1-\epsilon^{-x}$ column. This gives a value for x between 0.22 and 0.23 that is approximately 0.223 . Therefore it takes 0.223 time constants for the exponential curve to reach 20% of the maximum value.

TABLE 2. EXPONENTIAL FUNCTIONS.

8.4 Exponential Formulae for Charge and Discharge. By combining all of the processes used in the calculations in paras. 7.2 and 7.3 , general formulae can be derived for the voltages and currents in $R-C$ and $I-R$ circuits.

For example, to find a formula for the variation of voltage across the capacitor of an R-C circuit after the applied voltage to the circuit has been altered, consider that the applied voltage is initially E_{A} and the capacitor is fully charged to this voltage. The input voltage is then changed to \mathbb{I}_{B} so that the oapacitor voltage changes exponentially towards \mathbb{E}_{B} as in Fig. 30. The maximum change of voltage ($\triangle E$) is E_{B} - EA. Thinking of the initial voltage (E_{A}) as the reference voltage, after the change of the input voltage, the capacitor voltage (e_{C}) increases towards a maximum value, and the change as a fraction of the maximum at any point on the curve is described by the equation -

$$
y_{B}=1-\epsilon^{-x}
$$

As $\triangle E$ is the maximum change, the actual voltage change is -

$$
e_{0}(\text { change })=\Delta E\left(1-\epsilon^{-x}\right)
$$

Adding this to the reference voltage, the actual capacitor voltage at any instant is -.

$$
{ }^{\rho} C=E_{A}+\left[\Delta E\left(1-\epsilon^{-x}\right)\right]
$$

X is the time (t) in time constants -
$\therefore x=\frac{t}{\tau}$
$=\frac{t}{C R}$ for $R-C$ circuits.

This formula applies independent of whether E_{A} or E_{B} are positive or negative, or the change of voltage is positive or negative.

Other formulae can be derived in a similar manner, and these are given in Table 3. However, in most cases it is more convenient to reason out the shape of the resultant curves, and then use the relevant section of the exponential tables to determine the relationship between time constant and fraction of the maximum value, than to attempt to memorise the formulae of the table.

FIG. 30. CAPACITOR VOLTAGE.

r-C CIRCUITS	L-R CIRCuITS
$e_{R}=\Delta E \epsilon^{-x}$	$e_{R}=E_{A}+\left[\Delta E\left(1-\epsilon^{-x}\right)\right]$
${ }^{e} C=E_{A}+\left[\Delta E\left(1-\varepsilon^{-x}\right)\right]$	el $\quad=\Delta E \epsilon^{-x}$
${ }^{i}(R-C)=\frac{\Delta E}{R} \varepsilon^{-x}$	${ }^{i}(L-R)=\frac{E_{A}}{R}+\left[\frac{\Delta E}{R}\left(1-\epsilon^{-x}\right)\right]$

$E_{A}=\mid n i t i a l$ Voltage
$x=\frac{t}{C R}$ for $R-C$ circuits
MHERE
$E_{B}=$ Final Voltage
$\Delta E=$ 期imum Vol tage Change $\left(E_{B}-E_{A}\right)$

TABLE 3. EXPONENTIAL FORMULAE FOR R-C AND L-R CIRCUITS.
Example 7. (Using exponential formula.) The oapacitor in Fig. 31a has been completely charged with the switch in position 1. The switch is then operated to position 2. What is the capacitor voltage 60 mS after the switch operation?

The capacitor is charged to -40 volts (E_{A}). When the switch is in position 2 the voltage attempts to change towards +60 volts $\left(E_{B}\right)$ as shown in Fig. 31b. The formula for the capacitor voltage is -

$$
\begin{aligned}
e_{C} & =E_{A}+\left[\Delta E\left(1-\epsilon^{-x}\right)\right] \\
\Delta E & =E_{B}-E_{A} \\
& =60-(-40)=100 \mathrm{~V} . \\
x \text { for } 60 \text { RS } & =\frac{t}{C R} \\
& =\frac{60 \times 10^{6}}{10^{3} \times 2 \times 4 \times 10^{\frac{+}{2}}}=0.75 \\
\therefore \text { Voltage after } 60 m S & =-40+\left[100\left(1-\epsilon^{-0.75}\right)\right] \\
& =-40+[100 \times .5276] \\
& =-40+52.76 \\
& =+12.76 \mathrm{Volts}
\end{aligned}
$$

(a)

(b)
9. CRARGING FROM A NEMTORK.
9.1 In many practical circuits the charge and oischarge of capacitors and inductors is from a network of components, valves and voltage sources. It is often required that the change of charge of a capacitor in the anode oircuit of a valve as in Fig. 32 a be examined when the grid voltage changes abruptly from one value to another. This type of circuit can be considered as being equivalent to a simple voltage divider consisting of the load resistance and the D.C. resistance of the valve for the cinouit voltages applying (Fig. 32b). Even so, it is rot obvious how the charge of the capacitor will vary or what will be the time constant of the circuit.

(a)

(b)

FIG. 32. CAPACITOR CEARGITG FROM A METWORE.
9.2 Thevenin's Theorem. The shape and the timing of the charge curve for the capacitor in Fig. 32, and of capacitors and inductors in other and perhaps more complicated circuits, is easily examined by using Thevenin's Theorem. One way of stating thevenin's Theorem is -

The current in any impedance connected to a two terminal network of any number of impedances and voltage sources, is the same as when the impedance is connected wo a single voltage source equal to the open circuit voltage at the two terminals, and with an internal impedance equal to the impedance measured at the terminals with the voltage source replaced by impedances equal to their respective internai impedances.

This statement is explained in Fig. 33. The network in Fig. 33a supplies current to impedance Z_{L}. With Z_{L} disconnected the voltage between A and B is E_{0} (Fig. 33b) and the impedance looking into A and B with any voltage sources in the network replaced by their equivalent impedances, is Z_{0} (Fig. 330). The equivalent circuit for the network is then as in Fig. 33d, with a voltage, 代, being applied to terminals A and B via an impedance, z 0 .

(a)

(c)

(b)

(d)

FIG. 33. THEVMEIN'S THBOREM.
9.3 A simple problem solved by twe methods proves the validity of the theorem and indicates how it is used.

Fxampe 8. In the circuit of Fig. 34; what is the current through R_{3}.

FIG. 34. CIRCUIT FOR EXAMPLE B.

Solution (i).

$$
\begin{aligned}
\text { Parallel resistance of } R_{2} \text { and } R_{3} & =\frac{500 \times 2000}{500+2000}=400 \Omega \\
\text { Total Resistance } & =4,000 \Omega \\
\text { Iotal Current } & =\frac{24,5 \times 10^{3}}{4000}=5 \mathrm{~mA} . \\
\text { Yoltage across } R_{2} \text { and } R_{3} \text { in paraliel } & =\frac{5 \times 400}{10^{3}}=2 \mathrm{~V} . \\
\text { Current through } R_{3} & =\frac{2 \times 10^{3}}{2000}=1 \mathrm{~mA} .
\end{aligned}
$$

Solution (ii). (Theyenin's Theoren.)
In Fig. 34, with R_{3} disconnected, the voltage between A and B

$$
=\frac{500 \times 24.5}{5000}=2.45 \mathrm{~V} .
$$

Resistance between A and B with $24.5 V$ battery replaced by a short circuit

$$
=\frac{4500 \times 500}{4500+500}=4508
$$

The equivalent circuit is shom in Fig. 35.

FIG. 35. EQUIVALHNT CIRCUIT FOR EXAMPIE 8.
From Fig. 35, current through $\mathrm{F}_{3}=\frac{2.45 \times 10^{3}}{2450}=1 \mathrm{~mA}$.

PAGE 30.

9.4 Charging Capacitor from a Complex Source. The method of calculation using Thevenin's Theorem is applied to the charging of a capacitor in the following problem.
Example 9. (i) Find the voltage across the capacitor in Fig. 36a, 210mS after the switch is closed.
(ii) Find the initial charging current through the capacitor.
(i) Voltage across A and B with capacitor disconnected (switch closed) -

$$
=\frac{1}{(1+0.25)} \times 250=\frac{250}{1.25}=200 \mathrm{~V} .
$$

Resistance of source with battery replaced by a short circult -

$$
=\frac{\left(0.25 \times 10^{6}\right)\left(1 \times 10^{\hat{0}}\right)}{\left(0.25 \times 10^{6}\right)+\left(1 \times 10^{6}\right)}=200 \mathrm{k} \Omega .
$$

\therefore Equivalent circuit is as in Fig. 36b.
Iime constant of equivalent circuit -

$$
=\frac{0.6 \times 0.2 \times 10^{6} \times 10^{3}}{10^{6}}=120 \mathrm{mS} .
$$

210 mS expressed in time constants -

$$
=\frac{210}{120}=1.75 \text { time constants. }
$$

From exponential functions ($1-\varepsilon^{-x}$), yoltage on capacitor after 1.75 time constants -
$=0.8262$ of maximum
$=0.8262 \times 200=165.24 \%$.
(ii) The initial charging current from the equivalent circuit -

$$
=\frac{200 \times 10^{3}}{0.2 \times 10^{6}}=1 \mathrm{~mA} .
$$

Answer:- (i) Capacitor voltage after $210 \mathrm{~ms}=165.24 \mathrm{\gamma}$. (ii) inttial charging current $=1$ mA.

(b)

FIG. 36. CIRCUIT FOR EXAMPLI 9.

This initial charging current can be verified by referring to Fig. 36a and considering the voltages when the switch is first closed. With no charge on the capacitor, and therefore no voltage across it, all of the supply voltage is across R_{1}. This means that the initial current through R_{1} is -

$$
i_{16}=\frac{E_{S}}{d_{i}}=\frac{250 \times 10^{3}}{0.25 \times 100}=1 \mathrm{~mA} .
$$

With no voltage across R_{2} all wf this ourrent passes through 0 as a charging current. This is the same current as calculated frow the equivalent circuit.
Also when the capacitor is fully charged, no capacitor current flows, and the voltage across the components is only determined by the voltage divider. The maximum voltage on the capacitor is therefore the voltage arooss R_{2} with C effectively disconnected, i.e. $\frac{R_{2}}{R_{1}+R_{2}} E_{S}$. This is the same as the maximum voltage on the capacitor in the equivalent circuit, that is the somee volvage of the equivalent circuit.
10. TEST QUESTIONS.

1. Draw a rectangular wave and indicate on the wave -
(i) Pulise Spacing.
(ii) Pulse Duration.
(iii) Rise Time.
2. Define "Pulse Duty Factor".
3. Draw approximately the frequency spectrum of a rectangular pulse train with a pulse repetition frequency of $15 \mathrm{kc} / \mathrm{s}$ and a pulse duration of 5μ S. Show the frequency scale and the conponent frequency spacing.
4. What bandwidth is required to transmit a pulse with a rise time of $0.2 \mu \mathrm{~S}$ with negligible degradation.
5. Calculate the peak-to-peak value of a negative rectangular pulse train with a pulse spacing of $50 \mu \mathrm{~S}$ and a pulse duty factor of 0.1 . The average value of the wave is -5 yolts and the maximum positive part of the wave is at -1 volt.
6. The video waveforms on the anode of a viden amplifier are shown for a black picture signal in Fig. 37a and for a white picture signal in Fig. 37b. that D.C. anode voltage would be indicated by a moving coil meter for each signal condition?

(a)
(b)

(c)

FIG. 37. WAVEFORMS AND CIRCUIT FOR QUESTIONS 6 AND 7.
7. The video signals of Fig. 37 are A.C. coupled to the grid cathode circuit of a television picture tube as in Fig. 37 c . Cut-off of the picture tube occurs when the grid is 60% negative with respect to the cathode. The bias is adjusted with each signal in turn so that black level of the signal is at the cut-off voltage. What is the bias voltage required at point A for each signal?
8. (i) Wefine "time constant" of an R-C circuit.
(ii) Draz the curves of voltage and current in an R-C circuit when the capaciton is charging from zeno to a maximum voltage ($E_{\text {M }}$). Mark the magnitude of each of the curves relative to $E_{\text {, }}$, one time constant after charging has comimene
9. The time constant of a series R-C circuit is 20 m . A 60 V supply is connected for $15 \mathrm{~m} S$, removed for 5 mand then connected again for a further 15 m . Calculate the capacitor voltage at the end of this time.
10. Tro capacitors, one of $1 \mu \mathrm{~F}$ and one of $4 \mu \mathrm{~F}$, are connected in series to a 120 volt supply via a $50 \mathrm{k} \Omega \mathrm{r}$ resistor.
(i) How long does it take the voltage on the
(a) ipf capacitor.
(b) 4uF capacitor,
to reach 20 volts?
(ii) What is the circuit current at the instant the circuit is completed?
11. Fig. 38 is intended to introduce a time delay in relay operation. The switch rests in position 1 and timirg starts when the switch is operated to position 2 where a bias voltage of -5 voits is comected to the grid to prevent excess anode current.

The relay operates when the grid is -10 volts and releases when the grid is -15 volts with respect to the cathode in each case.
(i) What value of capacitance is required to giva a 4.6 minute delay?
(ii) The switch remains in position 2 until the capacitor is fully charged and then returns to position 1. how long is it before the relay release voltage is reached?
(iij) If the operate voltage required changos to - -8 volts, what would be the change in time delay introduced by the circuit?

FIG. 38. CIRCUIT FOR QUESTION 11.

FIG.-9. CIRCUIT FOR QUESIION 12.
14. A 4 henry inductor with an internal resistance of 400Ω is connected to a battery. The current after 5ns i. . .m.
(i) that is the battery voltage?
(ii) How long will it take for the current through the inductor to reach 20 m , when:-
(a) A 4000 resistor is connected in series with the inductor?
(b) A 4008 resistor is connected in parallel with the inductor?
(c) A 400Ω resistor is connected in parallel with the inductor and another 400Ω in series with the combination?
15. A 100 val battery is connocted to a 2μ capacitor via a $10 k \Omega$ resistor, and the capacitor is conpletaly charged. A $2.5 \mathrm{k} \Omega$ resistor is then connected across the capacitor.
(i) Draw graphs of the change of:-
(a) voltage across the eapacitor;
(b) voltage across the $10 \mathrm{k} \Omega$ resistor;
(c) current in the capacitor;
(d) current in the $10 k \Omega$ resistor;
(g) current in the $2.5 k \Omega$ resistor.
(ii) Calculate and indicate on the graphs the initial, maximui and final values.
(iii) How long does it take for the change to be, for practical purposes, completed?

