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1. INTRODUCTION. 

In the past, relay circuits were used extensively in industrial control systems and 

automatic telephone exchanges to make decisions and control mechanical operations.  Even  

the original digital computers were developed using relay logic circuits.  Nowadays, electronic 

logic circuits are preferred because of their reliability, speed of operation, and size;  they 

have allowed many systems to be developed that were previously only a theoretical possibility.  

The increasing use of electronic logic circuits in telephone, telegraph, and data transmission, 

automatic telephony, radio supervisory equipment, measuring instruments, and mail handling 

equipment, means that the technician of the future must have an understanding of electronic logic 

principles and techniques.  This paper explains how electronic circuits can make the decisions 

previously entrusted to relay contact arrangements.  The paper Electronic Logic Principles 2 

explains how information is stored and transmitted in electronic logic systems.   

At the time of writing, there is no universally accepted standard for the use of terms, 

symbols, and notations in logic equipment.  Until a universal standard is adopted, and 

observed, the following practices generally apply in this, and other papers of the series:-  

The word ″logic″ is used as a noun or adjective as required.   

Tables variously termed ″Tables of Combination″, or ″Tables of Possibilities″ are 

termed ″Truth Tables″.   

Logic 1 and logic 0 are used generally, although the use of H (high) and L (Low)  

as an alternative is briefly explained.   

Since many different symbols exist in the field, one type only has been chosen for use 

throughout the paper;  other equivalent symbols are shown on page 32.   

1.1 

1.2 
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2. INTRODUCTION TO LOGIC. 

BINARY VARIABLES.  Aristotle, the Greek philosopher, made a study of logic and developed it 

as a tool for solving philosophical problems.  In the late 1930s bivalent, or two-state  

logic was adapted for analysing multi-contact networks in automatic telephone equipment, and it is 

now used in the design and understanding of electronic logic equipment.   

Bivalent (two-state) logic uses a binary variable which:-   

Can have only two possible conditions (or states).   

Must be either in one condition or the other.   

Is never in both conditions at the same time.   

Examples of the use of binary variables in various types of bivalent logic applications are:-  

To philosophers a statement is either    TRUE          or  FALSE   

Switches or relay contacts are either    CLOSED        or  OPEN   

An electronic logic signal is either at  ONE DEFINED   or ANOTHER DEFINED  

                                         VOLTAGE LEVEL    VOLTAGE LEVEL   

This paper is concerned with the application of bivalent logic or electronic circuits using two 

defined voltage levels for the binary variable.   

DERIVATION OF VOLTAGE LEVELS IN ELCTRONIC LOGIC CIRCUITS.  The circuit arrangement in  

Fig. 1a is often used to develop the defined voltage levels in electronic logic circuits.  

SC1 and RL form a voltage divider, where the resistance of SC1 determines the output voltage.  SC1 

is operated as a switching transistor which is either saturated (ON), or cut-off (OFF).  When the 

transistor is saturated (Fig. 1b), its emitter to collector resistance is very small (assumed to 

be negligible), and 0 volts is extended to the output.  This is one defined voltage level of the 

binary variable.  When the transistor is cut-off (Fig. 1c) its emitter to collector resistance is 

high (assumed to be an open-circuit) and NO current flows through RL.  Since there is no potential 

drop across RL, the supply voltage Vcc is extended to the output.  This is the other defined 

voltage level of the binary variable.   

 

 (a) (b) (c) 

 

FIG. 1.  DERIVATION OF VOLTAGE LEVEL. 

LOGIC 1 AND LOGIC 0.  For convenience, the two states of a binary variable are assigned logic 

symbols, such as the binary notations 1 and 0, or H and L.  In practice, the symbols 1 and 0 

are commonly used.  Either of the two states of the binary variable can be assigned logic 1, but 

it is usual for:-  

Logic 1 to represent (a)  a TRUE or SIGNIFICANT statement.   

(b)  a CLOSED switch or contact.   

Logic 0 to represent (a)  a FALSE or INSIGNIFICANT statement.   

(b)  an OPEN switch or contact. 

In electronic logic systems, one of the two defined voltage levels is assigned logic 1, and the 

other logic 0.  Once the logic significance has been defined, it is usual for it to be maintained 

throughout a system.   

2.1 

● 

● 

● 

2.2 

● 

● 

● 

2.3 

2.4 
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POSITIVE AND NEGATIVE LOGIC.  When the more positive voltage is assigned logic 1, and the 

less positive voltage is assigned logic 0, the system is said to use ″positive″ logic.  

Examples of positive logic are shown in Fig. 2a.  When the more negative voltage is assigned logic 

1, and the less negative voltage is assigned logic 0, the system is said to use ″negative logic″.  

Examples of negative logic are shown in Fig. 2b.    

Some manufacturers avoid giving one voltage level more significance than the other, and designate 

the more positive voltage ″High″ (H) and the less positive voltage ″Low″ (L).   

 
(a) Examples of Positive Logic. 

 
(b) Examples of Negative Logic. 

FIG. 2.  POSITIVE AND NEGATIVE LOGIC. 

BOOLEAN ALGRBRA.  In normal algebra, lengthy word statements are written in shorthand form 

by using alphabetical characters to represent the variables, and standard arithmetical 

symbols to show the relationship between the variables.  For example, Ohms law states that the 

current in a circuit is directly proportional to the applied voltage, and inversely proportional 

to the resistance of the circuit.  Algebraically, this lengthy statement is written as I = 
 

 
, 

where I, E and R are the variables;  and since I depends on the values of E and R, it is the 

dependent variable.  The ″equals″ and ″division″ signs indicate the relationship between the 

variables.   

In electronic logic circuitry, the lengthy word statements used to describe logic relationships 

are expressed in shorthand form with Boolean algebra;  named after the originator George Boole.  

In Boolean algebra, alphabetical characters such as A, B, C etc., are used to represent the 

binary variables, and arithmetical symbols show the relationships between the variables.  The 

arithmetical symbols used in Boolean algebra have the following meanings:-  

The symbol (.) represents the word AND.   

The symbol (+) represents the word OR.   

The symbols (
—
) or (′) represents the word NOT.  The (′) is termed a ″Prime″.   

Note, that the (+) sign loses its normal arithmetical meaning when used in Boolean algebra.   

The following example shows how Boolean algebra is used to express the relationship in a logic 

circuit.  Fig. 3 is a block diagram representing a logic circuit having three inputs A, B and C.  

The logic condition on output D is dependent on the logic conditions on inputs A, B and C.  Now 

assume that the following word statement describes the logic relationship of the circuit:-  

D is logic 1 when A is logic 1 AND B is logic 1 AND C is logic 1.   

This word statement is expressed in Boolean form by:-  

D = A AND B AND C.   

Replacing the AND with (.) the equation becomes:-   

D = A.B.C.   
 

FIG. 3.  LOGIC CIRCUIT. 

Note, that the word ″when″ in the word statement is replaced by an equal sign (=) in the Boolean 

equation, because the condition on output D is dependent on the conditions on inputs A, B and C.   

The term A.B.C is a Boolean expression which describes the function performed by the logic 

circuit preceding the output.   

The conditions required to make the output of the logic circuit significant are more readily seen 

from the Boolean expression than from the word statement.  It is essential that you should become 

familiar with interpreting the Boolean expressions used in logic diagrams.  Word statements are 

very limited in their application, as they are too cumbersome when used to express the logic 

relationships in complete logic circuits.   

2.5 

2.6 

● 

● 

● 
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3. THE AND FUNCTION. 

The function of any circuit made up of switches, or contacts, is to provide a complete circuit 

path when specified conditions exist.  Fig. 4 is the circuit of two switches (A and B) 

connected so that the circuit (C) is complete when switch A AND switch B are closed.  It therefore 

performs the AND function.   

 
 

FIG. 4.  SWITCHES CONNECTED TO PERFORM AND FUNCTION. 

TRUTH TABLES.  The possible combinations of the states of the variables in a circuit which 

performs a logic function are often tabulated in tables using the logic symbols 1 and 0.  

Tables of this type are called truth tables, because they show which combination, or combinations, 

make the dependent variable true (logic 1),.  They are also known as tables of possibilities, or 

tables of combinations.   

TRUTH TABLE FOR AND FUNCTION.  Table 1 is the truth table which gives the circuit 
possibilities of the three binary variables shown in Fig. 4.  These variables are:-  

A, which is either CLOSED (logic 1) or OPEN (logic 0),  

B, which is either CLOSED (logic 1) or OPEN (logic 0), and  

C, the complete circuit, which is either CLOSED (logic1) or OPEN (logic 0).   

All possible combinations of A and B are listed in the first two columns of the truth table, and 

the condition of C for each combination is listed in the third column.  Fig. 5 shows all the 

possible combinations of the variables in circuit form.   

 

 

 
 

FIG. 5  CIRCUIT POSSIBILITIES. 

 

 A B C 

...  C open   (Logic 0) ........... 0 0 0 

...  C open   (Logic 0) ........... 0 1 0 

...  C open   (Logic 0) ........... 1 0 0 

...  C closed (Logic 1) ........... 1 1 1 

TABLE 1.  TRUTH TABLE 

FOR AND FUNCTION. 

WORD STATEMENT OF AND function.  Table 1 is the truth table for an AND function, and it can 
be summed up with the following word statement:-  

C is logic 1 when A is logic 1 AND B is logic 1. 

BOOLEAN EQUATION OF AND function.  Boolean algebra is used to express this statement in 
shorthand, as follows:-  

  C is the dependent binary variable,   

 C = A.B        where A and B are binary variables,  

  The symbol (.) is read as AND. 

In practice the (.) may be omitted and the expression written as AB. 

Note that the equation expresses the condition which applies to the circuit in its logic 1 state 

only.  For C to be logic 0, it is not necessary for both A and B to be logic 0.   

3.1 

3.2 

3.3 

● 

● 

● 

3.4 

3.5 
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4. AND GATES. 

The function of an electronic gate circuit is to provide a specified voltage level at its 

output, when some specified input voltage conditions exist.  An AND gate is defined as an 

electronic logic circuit which provides a logic 1 voltage level on its output when all inputs are 

at the logic 1 voltage level.  Fig. 6 shows the symbol used to represent a two input AND gate in 

logic diagrams in this paper.  Other AND gate symbols are shown in page 32.   

The lines on the symbol represent single wires.  Those on the left are inputs to the gate, and the 

one on the right is the output.  When this symbol is used the power supply wiring is not shown.   

 
 

FIG. 6.  ELECTRONIC AND GATE SYMBOL. 

EXPRESSION OF AND GATE OPERATION.  In the AND gate shown in Fig. 6 there are three binary 
variables, namely:-  

A and B, the inputs, which are either at the voltage level representing logic 1,  

or, the voltage level representing logic 0.   

C, the output and dependent variable, which is either at the voltage level representing 

logic 1, or the voltage level representing logic 0, depending on the logic levels on  

the inputs.   

In Table 2, the possible combinations of input conditions are tabulated, together with the logic 

conditions which result on the output.   

INPUTS OUTPUT 
 

C A B 

0 0 0 

0 1 0 

1 0 0 

1 1 1 

TABLE 2.  TRUTH TABLE FOR AND GATE. 

Since output C is logic 1, only when input A is logic 1 AND input B is logic 1, the AND  

function is performed.  Therefore, the operation of an AND gate can be expressed in Boolean form 

by:-   

  C is the output,   

 C = A.B        where A and B are the inputs,  

  The symbol (.) is read as AND. 

AND GATE rule.  The following rule allows the logic significance of the output of an 
electronic AND gate to be determined.  It applies to all AND gates, irrespective of the number of 

inputs connected.   

The output of an AND gate is:-  

logic 1 when ALL inputs are logic 1.   

logic 0 when ANY input is logic 0.   

Question 1 on page 32 is an exercise on AND gates, and should be attempted before reading further.   

4.1 

4.2 

● 

● 

4.3 

● 

● 
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5. THE OR FUNCTION. 

Fig. 7 shows two switches connected so that the circuit C is complete, or significant, when 

switch A OR switch B is closed.  It therefore performs the OR function.   

 
FIG. 7.  SWITCHES CONNECTED TO PERFORM OR FUNCTION. 

TRUTH TABLE FOR OR FUNCTION.  Three binary variables are represented by the circuit in Fig. 7, 
these are:-  

A, which is either CLOSED (logic 1) or OPEN (logic 0),   

B, which is either CLOSED (logic 1) or OPEN (logic 0),   

C, the complete circuit, which is either CLOSED (logic1) or OPEN (logic 0), and is the 

dependent variable.   

Table 3 shows the possible combinations of A and B and the condition of C for each combination   

A B C 

0 0 0 

0 1 1 

1 0 1 

1 1 1 

TABLE 3.  TRUTH TABLE FOR OR FUNCTION. 

WORD STATEMENT OF OR FUNCTION.  A word statement summing up the conclusion reached from 
Table 3 states that:-  

C is logic 1 when A is logic 1 OR B is logic 1. 

BOOLEAN EQUATION FOR OR function.  Boolean algebra is used to express this statement in 
shorthand form as follows:-  

  C is the dependent binary variable,   

 C = A + B         where A and B are binary variables,  

  The symbol (.) is read as AND. 

Another way of expressing C = A + B is:-   

C = A 

C = B 

This does not mean that C equals A, and C equals B; it means that C is dependent on the logic 

state of A only OR B only. 

5.1 

5.2 

● 

● 

● 

5.3 

5.4 
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6. OR GATES. 

An OR gate is defined as an electronic logic circuit which provides a logic 1 voltage level 

on its output when any input is at the logic 1 voltage level.  OR gates are often represented 

in logic diagrams by the symbol shown in Fig. 8.  Other OR gate symbols are given on page 32.   

EXPRESSION OF OR GATE OPERATION.  The behaviour of an electronic OR gate for all possible 
combinations of input logic levels is given in Table 4.   

 

 

 

 
 

 

 

FIG. 8.  ELECTRONIC OR GATE SYMBOL. 

INPUTS OUTPUT  

C A B 

0 0 0 

0 1 0 

1 0 0 

1 1 1 

TABLE 4.  TRUTH TABLE FOR OR GATES. 

FIG. 8.  NAND GATES AS SR FLIP-FLOP. 

Since the output C is logic 1 when either input A OR input B is logic 1, (or both are logic 1) the 

OR function is performed.  Therefore, the operation of an OR gate can be expressed in Boolean  

form by:-   

  C is the output,   

 C = A + B        where A and B are the inputs,  

  The symbol (+) is read as OR. 

OR GATE RULE.  The output of an OR gate is:-  

logic 1 when ANY inputs are logic 1.   

logic 0 when ALL input is logic 0.   

Question 2 on page 33 is an exercise on OR gates, and should be completed before reading further.   

7. THE NOT FUNCTION. 

The NOT function is the ″negation″ or the ″inversion″ of the state of a variable, and the 
electronic logic element which performs it is called an inverter.  When the input of an 

inverter is logic 1, its output is logic 0 (that is, NOT logic 1).  Conversely, when its input is 

logic 0, its output is logic 1 (that is, NOT logic 0).  It therefore inverts the logic condition on 

its input.   

Fig. 9 shows a symbol used for an inverter, and Table 5 is the Truth table.  When the input of an 

inverter is designated A, the inverted output is designated Ā or A′, which is read as NOT A or A 

NOT.  A and Ā are referred to as the complements of each other.  Other inverter symbols are  

given on page 32.   

 

 

 
 

FIG. 9.  INVERTER SYMBOL. 

INPUT 

A 

OUTPUT  

C 

0 1 

1 0 

TABLE 4.  TRUTH TABLE FOR INVERTER. 

Question 3 on page 34 should now be completed.   

6.1 

6.2 

6.3 

● 

● 

7.1 
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8. TIMING DIAGRAMS. 

In logic circuits, it often occurs that the signals appearing at the gate inputs are of 

various pulse lengths, and not repetitive.  With AND gates it is necessary that all inputs 

be significant at the same time for the gate output to become significant.  A timing diagram 

enables us to determine when the output of a gate becomes significant, and also the output pulse 

length.   

Fig. 10 shows an example of the input conditions applied to an AND gate and the resulting output.  

It is assumed that the significant condition (logic 1) is a positive voltage level, and logic 0 

is zero volts.  (This is positive logic).   

 
 

FIG. 10.  AND GATE TIMING DIAGRAM. 

The graphs in Fig. 10 show that the output of the AND gate is logic 1 only when both inputs are 

logic 1.   

Now assume that the same signals are applied to an OR gate, as shown in Fig. 11.  In this case, 

the output is significant when either input A OR input B is significant.   

 
 

FIG. 11.  OR GATE TIMING DIAGRAM. 

9. COMBINED LOGIC FUNCTIONS. 

GENERAL.  Electronic logic circuits are required to provide a specified logic condition on 

their output when some special input conditions exist.  Logic circuits are made up by 

combining elements which perform the basic AND, OR and NOT functions.   

EXAMPLE OF COMBINED LOGIC FUNCTION.  The following example shows how a combined logic circuit 

is developed.  The logic circuit associated with the mechanical equipment in Fig. 12 is 

required to provide a pulse of logic 1 when an article exceeding four inches in height, or six 

inches in length, passes along the conveyor.  The input information is generated by light beams, 

and the output pulse could be used to control the operation of a solenoid which initiates some 

mechanical operation.   

The light detectors A, B and C provide a logic 1 to the logic circuit when an article breaks a 

beam.  Light beam A is broken by any article higher than four inches.  Light beams B and C are 

placed so that articles longer than 6″ break both beams at the same time.   

8.1 

9.1 

9.2 
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FIG. 12.  DETECTION OF OVERSIZE ARTICLES. 

A logic circuit which will perform the desired function is developed by making a logic word 

statement of the function to be performed, expressing it as a Boolean equation, and constructing 

a circuit from this Boolean equation.   

The function required of the logic circuit is expressed by the following word statement:-  

The output D must be logic 1 whenever A is logic 1 OR both B AND C are logic 1.   

This means that D is logic 1 whenever the light beam to A is broken, OR when the light beams 

to B and C are both broken at the same time.   

As logic circuits become more complex, the word statement of the function performed becomes more 

involved, and the advantage of expressing the function in shorthand is more obvious.  In this case 

the word statement of the function is expressed in Boolean form as follows:-  

D = A + B.C 

ELECTRONIC LOGIC CIRCUIT.  Fig. 13 is the logic diagram of an electronic circuit which uses an 

AND and an OR gate to perform the function required in Fig. 12.  The logic diagram is drawn by 

arranging the gates and connections so that the signal A + B.C is produced at the output.  To do 

this, B and C are connected to the AND gate so that the signal B.C (B AND C) is developed at its 

output.  The signal B.C and the signal A are connected to the OR gate so that its output, which 

is the combined output of the circuit, is A + B.C (A OR B AND C).   

 
 

FIG. 13.  ELECTRONIC LOGIC CIRCUIT. 

OPERATION OF CIRCUIT.  At normal, that is with no light beam broken, the logic levels indicated 

in Fig. 13 apply, and the output is at logic 0.  Articles within the height specification pass 

without breaking light beam A, so signal A stays at logic 0.  Although light beams B and C are 

both broken when an article within the length specification passes, they are broken at different 

times, so signals B and C are logic 1 at different times causing signal B.C to stay at logic 0.  

Normal articles, therefore, allow the output to remain at logic 0.   

When a high article passes, A goes to logic 1, causing output D to go to logic 1.  Also, a long 

article causes B and C to go to logic 1 together, thus producing logic 1 at output (B.C) of the 

AND gate, which in turn causes output D to go to logic 1.  A logic 1 on output D activates a 

mechanical function which rejects the oversize article.   
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INTERMEDIATE POINTS.  The intermediate points on logic diagrams are often designated with a 

Boolean expression which describes the logic function of the preceding equipment.  For example 

B.C designates an intermediate point in Fig. 13, and indicates that B and C have been ANDed 

together in the previous stage.  Although an intermediate point can be at logic 1, or logic 0, 

depending on the logic states of the inputs, the expression at an intermediate point can be  

used to determine when that point is at logic 1.  For example, point B.C is logic 1 when B is  

logic 1 AND C is logic 1.  If B and C do not meet these conditions the intermediate point B.C is  

at logic 0.   

CONVERTING BOOLEAN EXPRESSIONS TO LOGIC DIAGRAMS.   It is essential that you should be able 

to convert Boolean expressions to logic diagrams, and vice versa.   

One method of converting Boolean expressions to logic diagrams is to use the following steps, in 

the order given:-   

Combine any bracketed terms with the type of gate indicated by the sign within the 

brackets.   

Combine any ANDed terms.   

Combine any ORed terms.   

As an example, Fig. 14 is the logic diagram derived from the Boolean expression A.(B + C) + D.  

The first step in drawing this diagram is to combine the bracketed signals B and C in an OR gate 

(G1) to obtain the signal (B + C).  Next, signal A and signal (B + C) are combined in an AND  

gate (G2) to obtain the signal A.(B + C).  Then, signal A.(B + C) and signal D are combined in an 

OR gate (G3) to obtain the output signal A.(B + C) + D.   

 
FIG. 14.  LOGIC DIAGRAM REPRESENTING A.(B + C) + D. 

Boolean expressions not containing bracketed expressions are converted to logic diagrams by 

considering ANDed functions first and then the ORed functions.  For example, A + B.C is represented 

by the logic diagram shown in Fig. 12.   

 
FIG. 15.  LOGIC DIAGRAM REPRESENTING A + B.C. 

BOOLEAN EXPRESSIONS FROM LOGIC DIAGRAMS.  To derive a Boolean expression from a logic 

diagram, it is necessary to start from the inputs and progressively work towards the output, 

establishing a Boolean expression for each intermediate point.  For example, consider the logic 

diagram shown in Fig. 16.  First, the output of the inverter is established as Ā.  Signal Ā and 

signal B are ORed in gate G1 to establish the intermediate point Ā + B.  Next, signal Ā + B and 

signal C are ANDed in gate G2 to obtain the intermediate point (Ā + B).C.  The signal (Ā + B).C 

and signal D are then ORed in gate G3 to obtain the output signal (Ā + B).C + D.   

 
FIG. 16.  (Ā + B).C + D. 

9.3 

9.4 

● 

● 

● 

9.5 
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BRACKETS.  In general, the following rule should be observed if brackets are to be used in a 

Boolean expression.  If an OR function occurs, and the output of this is ANDed with another 

term, it is necessary to place brackets around the ORed terms.  The presence or absence of brackets 

in a Boolean expression can completely change the logic circuit represented by the expression.   

For example, the expression A + B.C has a different logic circuit to the expression (A + B).C, as 

shown in Figs 17(a) and 17(b) respectively.   
 

 
(a) Logic circuit of A + B.C 

 
(b) Logic circuit of (A + B).C 

FIG. 17.  THE IMPORTANCE OF BRACKETS. 

Question 4 on page 34 should now be attempted.   

10. CONSTRUCTION OF TRUTH TABLES. 

GENERAL.  Truth tables are used to record all the possible combinations of the logic 

conditions in a circuit, and the function of a logic circuit can easily be established by 

this means.  Where the function of a logic circuit is not easily established from the Boolean 

expression, or from the circuit itself, a truth table should be developed.  To assist in later 

studies of complex logic circuits, you should form the habit of developing and interpreting truth 

tables for all circuits.   

This paragraph describes a simple method of constructing a truth table to ensure that all 

possible input combinations are included.  When constructing truth tables, the number of 

input combinations is equal to 2n, where n is the number of inputs.  Table 6, which is the truth 

table for the circuit in Fig. 13, is used as an example.   

1.  Head the column inputs, intermediate points,  

and output, as shown in Table 6.  (Intermediate 

points are not always shown in truth tables,  

but assist in determining the output conditions).   

2.  Designate a column for each input, the 

intermediate points, and the output.   

3.  Determine the number of combinations.  In this 

case the number of combinations is 23 = 8  

because there are three inputs in Fig. 13.   

The number of combinations determines the  

number of horizontal lines in the truth table.   

4.  Commence all input columns with zeroes. 

5.  Complete the last input column (in this case  

C), by changing the condition of the binary 

variable on each line.   

6.  Complete the second last input column (in this 

case B) by changing the condition of the binary 

variable after every two combinations.   

Inputs 

 

 

A B C 

Intermediate 

Point 

Output 

(D) 

 

A + B.C B.C 

0 0 0 0 0 

0 0 1 0 0 

0 1 0 0 0 

0 1 1 1 1 

1 0 0 0 1 

1 0 1 0 1 

1 1 0 0 1 

1 1 1 1 1 

Table 6.  TRUTH TABLE FOR FIG. 13. 

7.  Complete the next input column (in this case A) by changing the condition of the binary 

variable after every four combinations.   

8.  Record the conditions of the intermediate points.  In the example, intermediate point B.C  

is logic 1 only when B is logic 1 AND C is logic 1.  If either B or C are at logic 0 the 

intermediate point B.C is at logic 0.   

9.  Record the output condition for each combination of input conditions.  In the example, D is 

logic 1 when A is logic 1 OR when the intermediate point B.C is at logic 1 (that is,  

D = A + B.C).   

When more than three inputs are involved, the same principle applies.  Each input column, from 

last to first has its condition changed according to the binary number pattern.  For example, the 

fourth last input column of a truth table would have the condition of the binary variable changed 

every eight combinations, and the fifth last column every 16 combinations, and so on.   

Question 5 on page 37 is an exercise on constructing truth tables.   

9.6 
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11. NAND AND NOR GATES. 

GENERAL.  Electronic AND and OR gates are usually passive networks containing diode and 

resistors only and, therefore, have an output power which is less than the input power. A 

desirable feature of logic gates is that their output signal should be capable of operating a 

number of other gates.  The limited output power from passive AND and OR gates prevent them from 

doing this without some sort of amplification.  For this reason, gate circuits have been developed 

which provide a transistor amplifier in conjunction with the basic AND and OR gates.  Because of 

the transistor amplifier connected in the output, the gate provides a logic inversion.  An 

electronic gate which contains an AND gate with an inverter (transistor amplifier) is called a  

NOT AND or NAND gate.  An electronic gate which contains an OR gate with an inverter is called a 

NOT OR or NOR gate.   

Both NAND and NOR gates can be arranged to perform the AND, OR or NOT functions, and in some cases, 

complete systems are built up using one type of NAND or NOR gate.  Modern NAND or NOR gates are 

built in the form of integrated circuits, which can be manufactured more cheaply than AND or OR 

gates built from discrete (individual) components.  Although the minimum number of elements is  

not necessarily achieved in a system built up from modern NAND or NOR gates, these systems have  

the advantage that they can be manufactured more economically than a system using discrete 

components, and faults are more easily rectified by substituting spare universal NAND or NOR 

elements.   

NAND GATES.  A NAND gate is defined as an electronic circuit which provides a logic 0 voltage 
level on its output when all inputs are at the logic 1 voltage level.  Fig. 18a is a symbol 

used to represent NAND gates in logic diagrams;  other NAND gate symbols are shown on page 32.  A 

small circle, called a state indicator, is added to an AND gate symbol to indicate an inversion 

following the AND function.  Fig. 18b is an equivalent circuit of a NAND gate using basic AND and 

NOT elements.   

Since the output of a NAND gate is the inverted output of the AND function A.B, it is written         , 

which is stated as (A AND B) NOT, or NOT (A AND B).  The expression          indicates, therefore, that 
the two input signals A and B are ″ANDed″ together and the result is inverted.  If the result of 

A.B is logic 1,          is logic 0 (that is, NOT logic 1).  If the result of A.B is logic 0,          is 
logic 1 (that is, NOT logic 0).  This is verified in table 7 which is the truth table for a NAND 

gate.  Although signal          in Fig. 18b is not always available as an output, it often helps to 
include this intermediate point when considering NAND gates.   

 
 

(a) Symbol 

 
 

(b) Logic Equivalent Circuit. 

FIG. 18.  ELECTRONIC NAND GATE. 

Inputs 

 

A   B 

 Output 

 

         A.B 

0   0 0 1 

0   1 0 1 

1   0 0 1 

1   1 1 0 

Table 7.  NAND GATE TRUTH TABLE. 

NAND GATES USED TO PERFORM THE NOT FUNCTION.  When only one input to a NAND gate is used, and 

the others have a permanent logic 1 connected to them, the NOT function is performed.  The 

output is dependent on the condition on the effective input, and is the inverse of it.  In Fig. 19 

the second input is permanently tied to logic 1, and the conditions which exist when A is logic 0 

are shown above the line.  Similarly, the conditions which exist when A is logic 1 are shown below 

the line.  These conditions are recorded in Table 8.  Since the output in each case is the  

inverse of the input, the output is A NOT, (Ā).   

11.1 
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FIG. 19.  NAND GATE USED AS INVERTER.

 

INPUT 

A 

OUTPUT  

Ā 

0 1 

1 0 

TABLE 8.  TRUTH TABLE FOR FIG. 19. 

When NAND or NOR gates are used to perform a logic function, a Boolean expression is obtained 

at the output which describes the elements involved, but does not necessarily describe the 

function in its simplest form.  For example, Fig. 21 shows how three NAND gates are connected to 

perform the OR function.  The Boolean expression            at the output of this circuit indicates the 
elements used, but does not describe the basic function of the circuit, which is A + B.  Two 

methods which can be used to prove the equivalence of two Boolean expressions, (that is, to prove 

that            = A + B) are:-  

Comparison of the truth tables of each expression.  If all input combinations and the 

resulting output conditions in each truth table are the same, the expressions are 

equivalent.   

Use of Boolean manipulation techniques.  An introduction to basic Boolean manipulation 

techniques is given in Section 14 of this paper.   

NAND GATE COMBINATION TO PERFORM THE AND FUNCTION.  In Fig. 20 two NAND gates are combined 

to perform the AND function.   

 
 

FIG. 20.  NAND GATE COMBINATION WHICH PERFORMS THE AND FUNCTION. 

Since only one input to the second NAND gate is used, and the other is permanently connected to 

logic 1, this gate performs the NOT function only.  Therefore, the signal A.B produced in the 

first gate is inverted twice and appears in the output.  Tables 9 and 10 are the truth tables for 

Fig. 20 and an AND gate, respectively.  Since the input combinations in the tables are arranged 

in the same order, and the output results are the same, both circuits perform the AND function.  

Also, because Fig. 15 and the AND gate both perform the same function,          is equivalent to A.B, 

that is,          = A.B.  From this it can be seen that a double inversion restores an expression  
back to its original form.   

Inputs 

 

 

A   B 

Intermediate 

Point 

Output 

 

 

         

 Inputs 

 

 

A   B 

Output 

 

 

A.B A.B           

0   0 0 1 0 = 0   0 0 

0   1 0 1 0  0   1 0 

1   0 0 1 0  1   0 0 

1   1 1 0 1  1   1 1 

 Table 9.  TRUTH TABLE FOR FIG. 13. TABLE 10.  AND GATE TRUTH TABLE. 
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NAND GATE COMBINATION TO PERFORM THE OR FUNCTION.  Fig. 21 shows how three NAND gates are 

combined to perform the OR function.  The expression          on the output indicates that the 
following functions have occurred in the circuit:  Signal A is inverted to Ā, signal B is inverted 

to   , both inverted signals are ″ANDed″ together (     ), and the output of the AND function is 

inverted to           .  Each of these functions is shown in the circuit.  Note that the first two NAND 
gates are used as inverters only.   

 
 

FIG. 21.  NAND GATE COMBINATION WHICH PERFORMS THE OR FUNCTION. 

Tables 11 and 12 are the truth tables for Fig. 21 and an OR gate, respectively.  Since the output 

results are the same in each case, the circuits are equivalent.  Both perform the OR function.  

Also, because Fig. 21 and the OR gate both perform the same function,            = A + B. 

Inputs 

 

 

A   B 

Intermediate 

Point 

Output 

 

 

            

 Inputs 

 

 

A   B 

Output 

 

 

A + B Ā           

0   0 1 1 1 0 = 0   0 0 

0   1 1 0 0 1  0   1 1 

1   0 0 1 0 1  1   0 1 

1   1 0 0 0 1  1   1 1 

 Table 11.  TRUTH TABLE FOR FIG. 21. TABLE 12.  OR GATE TRUTH TABLE. 

NOR GATES.  A NOR gate is defined as an electronic circuit which provides a logic 0 voltage 

level on its output when any input is at logic 1.  Fig. 22a shows a symbol used to represent 

NOR gates.  Other NOR gate symbols are shown on page 32.  Note that a state indicator is added  

to the OR gate symbol to indicate an inversion.  Fig. 22b is an equivalent circuit of a NOR gate 

using basic OR and NOT logic elements.  The expression            means that signals A and B are ″ORed″ 
together and the result inverted.   

 
(a) Symbol. 

 
(b) Equivalent circuit. 

FIG. 22.  ELECTRONIC NOR GATE. 

Although the signal A + B is not usually available as an output, it often helps to include this 

intermediate step when considering NOR gates.  Table 13 shows the function performed by a NOR 

gate.   

Inputs 

 

A   B 

 Output 

 

         A + B 

0   0 0 1 

0   1 1 0 

1   0 1 0 

1   1 1 0 

Table 13.  NOR GATE TRUTH TABLE. 

11.6 
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NOR GATES USED TO PERFORM THE NOT FUNCTION.  The NOT function is performed when one input to 

a NOR gate is used and the others are tied to logic 0.  In Fig. 23, the conditions which 

exist when A is logic 0 are shown above the line.  Similarly, the conditions which exist when A 

is logic 1 are shown below the line.  Since the output in each case is the inverse of the input, 

the NOT function is performed.   

 
 

FIG. 23.  NOR GATE USED AS INVERTER. 

NOR GATE COMBINATION TO PERFORM THE OR FUNCTION.  Fig. 24 shows how two NOR gates are 

combined to perform the OR function.   

 
 

FIG. 24.  NOR GATE COMBINATION WHICH PERFORMS OR FUNCTION. 

The second NOR gate acts as an inverter, so that the signal A+B produced in the first gate is 

inverted twice and becomes the output.   

NOR GATE COMBINATION TO PERFORM THE AND FUNCTION.  Fig. 25 shows how three NOR gates are 

combined to perform the AND function.  The first tow gates serve as inverters only, to 

produce the signals    and   .  These two signals are ″ORed″ together and the result is inverted to 

signal             .   

 
 

FIG. 25.  NOR GATE COMBINATION WHICH PERFORMS AND FUNCTION. 

Tables 14 and 15 are the truth tables of Fig, 25 and an AND gate, respectively.  Since the input 

combinations and the output conditions in both tables are exactly the same, Fig. 25 must perform 

the AND function.  Also, this means that the Boolean expressions              and A.B are equivalent, 

that is,              = A.B.   

Inputs 

 

 

A   B 

Intermediate 

Point 

Output 

 

 

           

 Inputs 

 

 

A   B 

Output 

 

 

A.B Ā           

0   0 1 1 1 0 = 0   0 0 

0   1 1 0 1 0  0   1 0 

1   0 0 1 1 0  1   0 0 

1   1 0 0 0 1  1   1 1 

 Table 14.  TRUTH TABLE FOR FIG. 21. TABLE 15.  OR GATE TRUTH TABLE. 
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COMPLEX FUNCTIONS USING NAND OR NOR GATES.  The development of the basic functions from 

NAND and NOR gates tends to indicate that the use of these universal gates is uneconomical.  

However, careful design can often lead to complex circuits being made from a similar number of 

NAND and NOR gates, to the number required if AND, OR and NOT elements were used.   

Fig. 26 shows how the complex function considered in section 9 is performed using NAND gates.  

This circuit still performs the function D = A + B.C.  The operation of the circuit can be readily 

understood if the NAND gate truth table is used in conjunction with the following description.   

Whilst all light beams are unbroken, A, B and C are at logic 0, and the output D is at logic 0.  

If light beam A is broken, logic 1 is applied to G1, the output of G1 goes to logic 0, and the 

output of G3 goes to logic 1.  If either B or C go to logic 1, the output of G2 will remain at 

logic 1, and the output of G3 remains at logic 0.  If both B and C go to logic 1, the output of 

G2 goes to logic 0, and the output of G3 goes to Logic 1.   

Question 6 on page 37 is an exercise in reading NAND and NOR gate logic diagrams.   

 
FIG. 26.  NAND GATE COMBINATION WHICH PERFORMS COMPLEX FUNCTION. 

12. EXCLUSIVE-OR, COMPARATOR AND ADDER. 

EXCLUSIVE-OR FUNCTION.  The function performed by an OR gate is sometimes referred to as the 

Inclusive-OR function, because it includes in the conditions which produce a logic 1 output, 

the case where both inputs are logic 1.  Another type of OR function, known as the Exclusive-OR 

function, provides a logic 1 output when only one input is logic 1 and the other logic 0, and it 

excludes the condition where both inputs are logic 1.  This is expressed as      +     .  The gate 
combination in Fig. 27 performs the Exclusive-OR function, and Table 16 shows the output condition 

for each combination of inputs.  The expression      +      means that the output is logic 1 when A 
is logic 1 AND B NOT is logic 1 (that is, B is logic 0), OR when A NOT is logic 1 (that is, A is 

logic 0) AND B is logic 1.   

 
FIG. 27.  ECLUSIVE-OR GATE COMBINATION. 

Inputs 

 

A   B 

 Output 

 

     +                     

0   0 1 1 0 0 0 

0   1 1 0 0 1 1 

1   0 0 1 1 0 1 

1   1 0 0 0 0 0 

Table 16.  EXCLUSIVE-OR TRUTH TABLE. 

11.11 
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Another circuit which performs the Exclusive-OR function is shown in Fig. 28.  The expression 

               is another way of expressing the Exclusive-OR function.  Expressed in words it 

states that the output is logic 1 when A OR B are logic 1 AND NOT when A AND B are logic 1.   

 
 

FIG. 28.  ALTERNATIVE EXCLUSIVE-OR GATE COMBINATION. 

Fig. 29 is a logic symbol which is sometimes used to indicate an Exclusive-OR circuit.  The circuit 

represented by the symbol may contain gate combinations such as those shown on Figs. 27 and 28.   

 
 

FIG. 29.  EXCLUSIVE-OR SYMBOL. 

COMPARATORS.  Comparators are special gate combinations which provide a logic 1 output when 

their inputs have the same logic condition, that is, when both inputs are at logic 1, or 

when both inputs are at logic 0.  This function is expressed as            .   Fig. 30 is a simple 

comparator circuit and Table 17 is the truth table for Fig. 30.  When A and B are both logic 1, 

the top AND gate provides a logic 1 output.  When A and B are both logic 0, the signals    and    
are both logic 1, so the bottom AND gate provides a logic 1 output.  The comparator circuit is 

said to test for equivalence.   

 
 

FIG. 30.  SIMPLE COMPARATOR. 

Inputs 

 

A   B 

 Output 

 

                              

0   0 1 1 0 1 1 

0   1 1 0 0 0 0 

1   0 0 1 0 0 0 

1   1 0 0 1 0 1 

Table 17.  TRUTH TABLE FOR FIG. 30. 

12.2 
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The comparator function is also performed when the Exclusive-OR circuit is followed by an 

inverter, as shown in Fig. 31.  Table 18 is the truth table for Fig. 31, and shows that  

              is obtained at the output.   

 
 

FIG. 31.  COMPARATOR USING EXCLUSIVE-OR AND INVERTER. 

Inputs 

 

A   B 

 Output 

 

              O/P of Exclusive-OR 

0   0 0 1 

0   1 1 0 

1   0 1 0 

1   1 0 1 

Table 18.  TRUTH TABLE FOR FIG. 31. 

COMPARATOR USING AND-OR-INVERT COMBINATION.  When the signals to be compared and their 

complements are available, as is often the case, the AND-OR-INVERT combination shown in  

Fig. 32 can be used as a comparator.  Table 19 is the truth table for Fig. 32 and shows that  

the output of the AND-OR-INVERT combination is exactly the same as that shown in Tables 17 and 

18, therefore, the expression                               is equivalent to                .   

 
 

FIG. 32.  COMPARATOR USING AND-OR-INVERT COMBINATION. 

Inputs 

 

A   B            

 Output 

 

                                     

0   0   1   1 0 0 0 1 

0   1   1   0 0 1 1 0 

1   0   0   1 1 0 1 0 

1   1   0   0 0 0 0 1 

Table 17.  TRUTH TABLE FOR FIG. 32. 
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HALF ADDER.  Adders are special gate combinations which add binary numbers together.  When 

two binary digits are added, the possible answers are:-   

 0 1 0 1 

 0 0 1 1 

 __ __ __ __ 

 00 01 01 10 

When adding binary numbers, the answer is split into two components, the sum, which goes in the 

right-hand column, and the carry, which is carried into the next most significant column.  Notice 

that the sum is 1 when one digit is 1 and the other is 0, and that the only time a carry is 

produced is when both digits are 1.  A circuit which determines the sum and carry when two digits 

are added is called a half-adder.  Fig. 33 is the basic logic diagram of a half-adder, and Table 

20 shows how its function is tabulated in a truth table.  The Exclusive-OR gate combination 

provides a logic 1 output only when one of the inputs is at logic 1, and is used to determine the 

sum.  Similarly an AND gate, which needs logic 1 on both inputs to give a logic 1 output, is used 

to determine the value of the carry.   

For example, if one input is at logic 1 and the other at logic 0, the output of the Exclusive-OR 

gate (the sum) is logic 1, and the output of the AND gate is logic 0 (the carry).  If both inputs 

are at logic 1, the output of the Exclusive-OR gate is logic 0 (the sum) and the output of the AND 

gate is logic 1 (the carry).   

 
 

FIG. 33.  HALF-ADDER. 

Inputs 

A    B 

 

Outputs 

C     S 

CARRY  SUM 

0    0 0     0 

0    1 0     1 

1    0 0     1 

1    1 1     0 

TABLE 20.  TRUTH TABLE FOR HALF-ADDER. 

FULL ADDER.  A full-adder is able to add the two digits on the inputs plus the carry from 

another adder.  Fig. 34 shows that a full-adder contains two half-adders and an OR gate.  

Table 21 is the truth table for a full adder.  Note that the binary sum of the two inputs and the 

carry-in, in the first three columns, produces the result in the last two columns.   

An understanding of the operation of the full adder can be gained by considering each input 

combination, in turn, through the circuit, and checking that the correct sum and carry-out is 

obtained, according to the truth table.   

 
FIG. 34.  FULL-ADDER. 

Inputs Outputs 

A B Carry-in Carry-out Sum 

0 0 0 0 0 

0 0 1 0 1 

0 1 0 0 1 

0 1 1 1 0 

1 0 0 0 1 

1 0 1 1 0 

1 1 0 1 0 

1 1 1 1 1 

TABLE 21.  TRUTH TABLE FOR FULL ADDERS. 

Question 7 on page 38 is an exercise on comparators and exclusive ORs.   
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13. ALTERNATIVE WORD STATEMENTS AND LOGIC SYMBOLS. 

GENERAL.  In the preceding sections, the word statements used to explain the operation of 

logic elements are based on the logic 1 conditions required to perform a designated function.   

Also, the symbols used to represent the elements are derived from the functions performed when  

the logic 1 conditions are considered.  In this section, the truth tables for these elements are 

reviewed to show that an alternative word statement may be derived when the logic 0 input 

conditions are considered, and that alternative symbols may be used to represent the alternative 

word statements.  The alternative word statements and logic symbols are used in some applications, 

because they show more clearly the relationship between a gate and the elements around it.   

It should be noted that alternative symbols are not always used in logic diagrams to represent 

alternative functions.  Some manufacturers use the normal symbols to represent elements performing 

alternative functions, and leave it to the person reading the circuit to apply their knowledge of 

truth tables to establish the alternative functions of the elements.   

AND GATE.  Table 22 is the truth table for an AND gate.   

Inputs 

A    B 

Output 

C 

0    0 0 

0    1 0 

1    0 0 

1    1 1 

TABLE 22.  AND GATE TRUTH TABLE. 

The word statements below are derived by examining the AND gate truth table.  The normal word 

statement describes the input requirements to produce a logic 1 on the output;  the alternative 

word statement describes the input requirements to produce a logic 0 on the output.  When the 

circuit connected to the output of the gate is activated by a logic 0, the alternative word 

statement applies.   

 NORMAL WORD STATEMENT ALTERNATIVE WORD STATEMENT 

 C is logic 1 when C is logic 0 when 

 A is logic 1 A is logic 0 

      AND      OR 

 B is logic 1 B is logic 0 

Note that the normal word statement shows that an AND gate performs the AND function when logic 1 

voltage levels are considered, but the alternative statement shows that an AND gate performs the 

OR function when logic 0 voltage levels are considered.  Since it is usual for logic 1 to have 

the greater significance, the gate derives its name (AND) from the function it performs when 

considering the logic 1 conditions.  Nevertheless it does perform the function:-  ″C is logic 0 

when A is logic 0 OR B is logic 0.″   

The symbol shown in Fig. 35b is an alternative symbol which may be used in logic diagrams to 

represent an AND gate which performs the OR function with logic 0 voltage levels.  The shape of 

the symbol indicates the OR function and the state indicators on the inputs and outputs show that 

this function is performed when logic 0 voltage levels are considered.  The normal symbol (Fig. 

35a) indicates the AND function, and the absence of state indicators shows that the function is 

performed when logic 1’s are considered.   

 
 

(a) NORMAL SYMBOL – shows operation  

for logic 1 conditions.   . 

 
 

(b) ALTERNATIVE SYMBOL – shows operation  

for logic 0 conditions.        . 

FIG. 35.  AND GATE – NORMAL AND ALTERNATIVE SYMBOLS. 
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OR GATE.  Table 23 is the truth table for an OR gate.   

Inputs 

A    B 

Output 

C 

0    0 0 

0    1 1 

1    0 1 

1    1 1 

TABLE 23.  OR GATE TRUTH TABLE. 

 NORMAL WORD STATEMENT ALTERNATIVE WORD STATEMENT 

 C is logic 1 when C is logic 0 when 

 A is logic 1 A is logic 0 

      OR      AND 

 B is logic 1 B is logic 0 

The normal word statement shows that an OR gate performs the OR function when logic 1 voltage 

levels are considered, while the alternative statement shows that the same gate performs the AND 

function when logic 0 voltage levels are considered.  It is called an OR gate because the logic 1 

condition is generally more significant;  however, it does perform the function ″C is logic 0 

when A is logic 0 AND B is logic 0.″   

The symbol in Fig. 36b is an alternative symbol which may be used in logic diagrams to represent 

an OR gate when the logic 0 conditions show the overall operation of a logic circuit more 

clearly.  The shape of the symbol indicates the AND function and the state indicators show that 

this function is performed when the logic 0 voltage levels are considered.  The shape of the 

normal symbol (Fig. 36a) indicates the OR function, and the absence of state indicators shows 

that the function is performed when logic 1’s are considered.   

 

 
 

(a) NORMAL SYMBOL – shows operation  

for logic 1 conditions.   . 

 

 
 

(b) ALTERNATIVE SYMBOL – shows operation  

for logic 0 conditions.        . 

FIG. 36.  OR GATE – NORMAL AND ALTERNATIVE SYMBOLS. 

INVERTER.  Table 24 is the truth table for an inverter.   

Input 

A 

Output 

Ā 

0 1 

1 0 

TABLE 24.  INVERTER TRUTH TABLE. 

The word statements derived from an inverter truth table are shown below.   

 NORMAL WORD STATEMENT ALTERNATIVE WORD STATEMENT 

 Ā is logic 0 when Ā is logic 1 when 

 A is logic 1 A is logic 0 

13.3 
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A choice is made between inverter symbols in Fig. 37 to represent inverters in logic diagrams.   

 

 
 

(a) NORMAL SYMBOL – shows operation  

for logic 0 output.       . 

 

 
 

(b) ALTERNATIVE SYMBOL – shows operation  

for logic 1 output.            . 

FIG. 37.  INVERTER – NORMAL AND ALTERNATIVE SYMBOLS. 

NAND GATE.  Table 25 is the truth table for a NAND gate.   

Inputs 

A    B 

Output 

C 

0    0 1 

0    1 1 

1    0 1 

1    1 0 

TABLE 25.  NAND GATE TRUTH TABLE. 

The word statements below are derived by examining the NAND gate truth table.   

 NORMAL WORD STATEMENT ALTERNATIVE WORD STATEMENT 

 C is logic 0 when C is logic 1 when 

 A is logic 1 A is logic 0 

      AND      OR 

 B is logic 1 B is logic 0 

The normal word statement shows that a NAND gate performs the AND function when logic 1 voltage 

levels are connected to its input, and the resultant output voltage is logic 0.  This operating 

condition is shown by the normal NAND gate symbol in Fig. 38a.  The inputs have no state 

indicators and this shows that the AND function is performed when the inputs are at the logic 1 

voltage level.  The state indicator on the output shows that a logic 0 voltage level is produced 

when the AND function is performed.   

 

 
 

(a) NORMAL SYMBOL – shows operation  

for logic 0 output.       . 

 

 
 

(b) ALTERNATIVE SYMBOL – shows operation  

for logic 1 output.            . 

FIG. 38.  NAND GATE – NORMAL AND ALTERNATIVE SYMBOLS. 

The alternative word statement shows that a NAND gate performs the OR function when logic 0 

voltage levels are considered on the inputs, and the resultant output voltage is logic 1.  This 

operating condition is shown by the symbol in Fig. 38b.  The shape of the symbol indicates that 

the OR function is performed, and the state indicators show that logic 0 voltage levels are 

required on the inputs to perform this function.  The absence of a state indicator on the output 

shows that a logic 1 voltage level is developed on the output when one input is at logic 0.   
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NOR GATE.  The truth table for a NOR gate is shown in Table 26.   

Inputs 

A    B 

Output 

C 

0    0 1 

0    1 0 

1    0 0 

1    1 0 

TABLE 26.  NOR GATE TRUTH TABLE. 

 NORMAL WORD STATEMENT ALTERNATIVE WORD STATEMENT 

 C is logic 0 when C is logic 1 when 

 A is logic 1 A is logic 0 

      OR      AND 

 B is logic 1 B is logic 0 

The normal word statement shows a NOR gate performs the OR function to produce a logic 0 on its 

output.  This operating condition is shown by the normal NOR gate symbol in Fig. 39a.  

 

 
 

(a) NORMAL SYMBOL – shows operation  

for logic 0 output.       . 

 

 
 

(b) ALTERNATIVE SYMBOL – shows operation  

for logic 1 output.            . 

FIG. 39.  NOR GATE – NORMAL AND ALTERNATIVE SYMBOLS. 

The alternative word statement shows that a NOR gate requires logic 0 input conditions to perform 

the AND function and produce a logic 1 on its output.  This operating condition is shown by the 

alternative NOR gate symbol in Fig. 39b.  The symbol shape indicates the AND function, the state 

indicators on the inputs show that this function is performed when the inputs are at logic 0, and 

the absence of a state indicator on the output shows that the AND condition is satisfied when  

the output is at logic 1.   

SPECIAL GATES.  Sometimes special logic circuits are encountered which cannot be classified  

as AND, OR, NAND or NOR gates.  They are represented in logic diagrams by using the AND or  

OR shape symbols, which show the function performed, and state indicators to show whether logic 1’s 

or logic 0’s are required on the inputs and outputs to perform the function indicated.  Table 27  

is the truth table for one of these special gates, and Fig. 40 shows the logic symbols.   

Inputs 

A    B 

Output 

C 

0    0 0 

0    1 0 

1    0 1 

1    1 0 

TABLE 27.  SPECIAL GATE TRUTH TABLE. 
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The following word statements are derived from Table 27 and explain the input conditions required 

to make the output logic 1 and logic 0 respectively.   

 NORMAL WORD STATEMENT ALTERNATIVE WORD STATEMENT 

 C is logic 1 when C is logic 0 when 

 A is logic 1 A is logic 0 

      AND      OR 

 B is logic 0 B is logic 1 

The logic symbols shown in Fig. 40 are developed from these statements.   

 
 

(a) NORMAL SYMBOL – shows operation  

for logic 1 output.       . 

 
 

(b) ALTERNATIVE SYMBOL – shows operation  

for logic 0 output.            . 

FIG. 40.  SPECIAL GATE SYMBOLS. 

When the gate is used to perform the function represented by the symbol in Fig. 40a it is called 

an ″Inhibit Gate″, because a logic 1 on input B (the inhibiting input) prevents (or ″inhibits″) 

the output from becoming logic 1.   

GATE COMBINATIONS.  The operation of any gate combination can be expressed by two word 

statements.  For example the operation of the circuit in Fig. 41a is explained by either of 

the two word statements below.   

 NORMAL WORD STATEMENT ALTERNATIVE WORD STATEMENT 

 F is logic 1 when F is logic 0 when 

 A, AND B AND C are logic 1 A, OR B OR C is logic 0 

      ORD      AND 

 when D AND E are logic 1 when D OR E is logic 0 

 

 
 

(a) NORMAL SYMBOL – shows operation  

for logic 1 output.       . 

 

 
 

(b) ALTERNATIVE SYMBOL – shows operation  

for logic 0 output.            . 

FIG. 41.  GATE COMBINATION. 

When the circuit connected to the output of Fig. 41a is activated by a logic 0, the second word 

statement is more useful.  Also, the use of the alternative symbols for the AND and OR gates, as 

shown in Fig. 41b, helps to show more clearly the input conditions required to produce a logic 0 

at the output.   

Question 8 on page 39 is an exercise in reading logic diagrams which use the alternative logic 

symbols.   

13.8 
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14. INTRODUCTION TO BOOLEAN MANIPULATION TECHNIQUES. 

COMPLEX LOGIC CIRCUITS.  Logic circuits often contain more elements than would appear 

necessary to perform the required logic function.  For example, Fig. 21 shows how three NAND 

gates are used to perform the OR function.  In this example, a Boolean expression            is 

developed which describes the actual NAND gate combination used, and the equivalence of            to to 
A+B was proven with truth tables.  

In practice, however, the Boolean expression describing the actual gate combination in a complex 

circuit may not readily indicate the basic function of the circuit, and the basic function may 

not be known.  For example, consider the circuit shown in Fig. 42.  The Boolean expression                     
developed at the output of this circuit describes the actual circuit used, but the input 

conditions required to make the output significant are not immediately obvious.  The operation of 

this complex circuit can be more readily understood if the basic function of the circuit is 

available.   

 
 

FIG. 42.  CIRCUIT OF                    . 

BASIC FUNCTION OF COMPLEX LOGIC CIRCUIT.  One method of obtaining the basic function of a 

complex Boolean expression is to apply known Boolean identities and laws to simplify the 

expression.  For example, the application of Boolean identities and laws to                     enables it to 
be simplified to Ā.(B + C).  This expression reveals that a significant (logic 1) output is 

obtained in Fig. 42 when Ā is logic 1 AND when either B OR C is logic 1.  Note that Ā is logic 1 

when A is logic 0.   

FUNCTIONAL LOGIC DIAGRAM.  A functional logic diagram can be drawn to represent a simplified 

Boolean expression.  A functional logic diagram is a simplified diagram having the same 

truth table as the actual logic circuit from which it was derived.  For example, Fig. 43 is a 

functional logic diagram of Fig. 42 as it represents the Boolean expression Ā.(B + C), which is 

the simplified expression of                    .   

 
 

FIG. 43.  FUNCTIOAL LOGIC DIAGRAM OF FIG> 42. 

It should be realised that some logic circuits may already be in their simplest form.  In these 

cases the function of the circuit is obtained directly from the Boolean expression describing  

the circuit.   

14.1 
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BOOLEAN IDENTITIES.  In this section of the paper it is intended to introduce some of the 

basic identities commonly used in converting complex Boolean expressions to their simplest 

function.  A Boolean identity equates two expressions which are equal for all possible combinations 

of their variables.  The equivalence of the two expressions in a Boolean identity can always be 

proven with the aid of truth tables.   

AND FUNCTION IDENTITIES.  Consider a two input AND gate with one input permanently tied to 

logic 1 as shown in Fig. 44.   

 
 

FIG. 44.   

The identity derived from this expression is:-  

A.1 = A  ..  ..  ..  ..   (1) 

This means that the output of the gate is always dependent on the logic condition at input A.  This 

can be proven as follows.  The variable A has two states, logic 1 and logic 0.  Substituting  

these in the identity A.1 = A we get:-  

1.1 = 1, when A is logic 1, and 

0.1 = 0, when A is logic 0.   . 

This identity is true because the output is equal to A for both states. 

Now consider an AND gate with one input permanently at 

logic 0, as shown in Fig. 45.  The output is always at 

logic 0 regardless of the condition of A.  The identity 

derived from this circuit is:-  

A.0 = 0  ..  ..  ..  ..   (2) 

When both inputs of an AND gate have the same signal 

applied, as shown in Fig. 46, the identity applying  

to the circuit is:-  

A.A = A  ..  ..  ..  ..   (3) 

When A is logic 1 the output is logic 1, and when  

A is logic 0 the output is logic 0, thus the output  

is always equal to the condition of A.   

Fig. 47 shows a signal Ā, and its complement A  

applied to an AND gate.  Since it is impossible for 

both A and Ā to be at logic 1 at the same time, the 

output of the gate must always be at logic 0.  

Therefore, the following identity applies. 

A.Ā = 0  ..  ..  ..  ..   (4) 

OR FUNCTION IDENTITIES.  Consider an OR gate with 

one input permanently tied to logic 1, as shown  

in Fig. 48.  An OR gate requires logic 1 at one input 

only to obtain a logic 1 output, therefore, the 

following identity applies:-  

A + 1 = 1  ..  ..  ..  ..   (5) 

 
 

Fig. 45. 

 

 

 
 

Fig. 46. 

 

 

 
 

Fig. 47. 

 

 
 

Fig. 48 
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The condition of the OR gate output in Fig. 49 depends 

on the logic condition of input A, because the other 

input is permanently tied to logic 0.  If A is at  

logic 1 the output is at logic 1, and if A is at  

logic 0 the output is at logic 0, therefore the 

following identity applies.   

A + 0 = A  ..  ..  ..  ..   (6) 

The OR gate in Fig. 50 has the same signal applied to 

both inputs.  Therefore, when A is logic 1 the output 

is logic 1, and when A is logic 0 the output is logic 

0.  Thus the output is equal to the logic condition of 

A, and the following identity applies:-  

A + A = A  ..  ..  ..  ..   (7) 

Fig. 51 shows an OR gate with signal A applied to one 

input, and its complement Ā applied to the other  

input.  Since one of these signals must always be at 

logic 1, the output of the gate must always be at  

logic 1.  Therefore, the following identity applies:-  

A + Ā = 1  ..  ..  ..  ..   (8) 

 

 
 

Fig. 49. 

 

 
 

Fig. 50. 

 

 
 

Fig. 51. 

APPLICATION OF AND AND OR IDENTITIES.  The following is a summary of identities applying to 

the AND and OR functions.   

 AND OR 

 A.1 = A  ..  ..  ..  ..   (1) A + 1 = 1  ..  ..  ..  ..   (5) 

 A.0 = 0  ..  ..  ..  ..   (2) A + 0 = A  ..  ..  ..  ..   (6) 

 A.A = A  ..  ..  ..  ..   (3) A + A = A  ..  ..  ..  ..   (7) 

 A.Ā = 0  ..  ..  ..  ..   (4) A + Ā = 1  ..  ..  ..  ..   (8) 

Some examples of the application of these identities are as follows:-  

Example 1.  Simplify A.1 + A.A + B.   

Substitute A for A.1 (identity 1).   

    = A + A.A + B.   

Substitute A for A.A (identity 3). 

    = A + A + B.   

Substitute A for A + A (identity 7). 

    = A + B (answer). 

Example 2.  Simplify (B + 0).(B + 1).C.   

Substitute B for B + 0 (identity 6) and  

           1 for B + 1 (identity 5). 

    = B.1.C   

Substitute B for B.1 (identity 1).   

    = B.C (answer).   

Further examples of simplifying expression with AND and OR identities are contained  in Question 

9 on page 39.   

14.7 
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COMMUTATIVE LAW.  This law states that the inputs to a logic gate may be listed in any order 

without affecting the logical operation.  For example, consider the three input AND gates in 

figs. 52a and 52b.  Since both these gates have the same signals applied, they perform the same 

logical operation.  Therefore it is true to say that:-  

A.B.C = C.B.A  ..  ..  ..  ..   (9)   

 

 (a) (b) 

FIG. 52.  COMMUTATIVE LAW APPLIED TO AND FUNCTION. 

The commutative law also applies to ORed variables, as shown in Fig. 53.  The logic function 

remains the same regardless of the order in which the input variables are listed.  This can be 

expressed in the following identity.   

A + B + C = C + B + A  ..  ..  ..  ..   (10)   

 

 (a) (b) 

FIG. 53.  COMMUTATIVE LAW APPLIED TO OR FUNCTION. 

ASSOCIATIVE LAW.  This law states that ANDed variables or ORed variables can be grouped 

together in any order in a Boolean expression.  This can be expressed in logical form for 

three ANDed variables as follows:-   

A.(B.C) = (A.B).C = A.B.C  ..  ..  ..  ..   (11)   

Each of the expressions has a different logic circuit, as shown in Fig. 54.  However the basic 

logic function of Figs. 54a and 54b is exactly the same as Fig. 54c.   

 

 (a) (b) (c) 

FIG. 54.  ASSOCIATIVE LAW APPLIED TO AND FUNCTION. 

The associative law can be applied to ORed variables as follows:-   

A + (B + C) = (A + B) + C = A + B + C  ..  ..  ..  ..   (12)   

The logic diagrams representing each of the expressions in identity 12 are shown in Fig. 55.  

Each of these circuits has exactly the same basic function which is A + B + C, as shown in  

Fig. 55c. 

14.8 
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 (a) (b) (c) 

FIG. 55.  ASSOCIATIVE LAW APPLIED TO OR FUNCTION. 

DISTRIBUTIVE LAW.  The distributive law is expressed as follows:-   

A.B + A.C = A.(B + C)  ..  ..  ..  ..   (13)   

Figs. 56a and 56b show the logic circuits used to represent each expression in the identity.  

Although each circuit is different, they both have the same function.  The distributive law shows 

that normal algebraic factorising techniques can be applied to a Boolean expression.   

 

 (a) (b) 

FIG. 56.  DISTRIBUTIVE LAW. 

The following are further examples of simplification using some of the previously stated 

identities.   

Example 1.  Simplify A.(A + B)   

Substitute A.A + A.B for A.(A + B) (identity 13).   

= A.A + A + B 

Substitute A. for A.A (identity 3).   

= A + A.B 

Factorise the expression (identity 13).   

= A.(1 + B) 

Substitute 1 for (1 + B) (identity 5).   

= A.1 

Substitute A for A.1 (identity 1).   

= A (answer).   

Example 2.  Simplify Ā   +         

Factorise the expression (identity 13).   

=             . 

Substitute 1 for       (identity 8).   

= Ā.1 

Substitute Ā for Ā.1 (identity 1).   

= Ā (answer).   

Question 10 on page 39 contains further examples on Boolean simplification.   

14.10 
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De MORGAN′S LAWS.  Generally, the basic function of a logic circuit can not be readily 

interpreted from a negated expression situated at an intermediate point, or at an output.  

For example, the basic function of the negated expression                              is not immediately obvious.  

De Morgan′s theorem, which is usually expressed in terms of two laws, provides a method by which  

a complex negated expression can be replaced by an alternative simplified expression.  De Morgan′s 

theorem implies that when an expression is negated, it can be replaced by another expression in 

which each variable is negated, each AND is changed to OR, and each OR is changed to AND.  The two 

laws derived from this theorem are as follows:-   

         =    +     ..  ..  ..  ..  (14) 

           =           ..  ..  ..  ..  (15) 

De Morgan′s Laws are frequently used identities in Boolean manipulation.   

The validity of the first of De Morgan′s laws (         =    +   ) can be shown with the aid of a two 
input NAND gate (Fig. 57) and truth tables.  The normal expression on the output of this gate is 

        , but this expression does not readily reveal the input conditions required to make the output 

significant.  However, and equivalent expression for          can be obtained by applying De Morgan′s 
theorem as follows:  A is changed to Ā,   is changed to   , and the AND is changed to an OR.  The 

new expression on the output of the NAND gate becomes    +   , which indicates that the output is 
significant when Ā is logic 1 OR    is logic 1, that is, when A is logic 0 OR B is logic 0.  The 

equivalence of the two expressions          and    +    is proven in truth tables 28 and 29.   

 
FIG. 57. 

A   B A.B           A   B            +    

0   0 0 1  0   0 1   1 1 

0   1 0 1  0   1 1   0 1 

1   0 0 1  1   0 0   1 1 

1   1 1 0  1   1 0   0 0 

 Table 28.  TRUTH TABLE FOR         . TABLE 29.  TRUTH TABLE    +   . 

The validity of the second of De Morgan′s Laws (               =      ) can be shown with the aid of a NOR 
gate (Fig. 58) and truth tables.  The input conditions required to make the output significant are 

not obvious from the output expression             .  Another expression can be obtained for            by 
applying De Morgan′s theorem as follows:  A is inverted to Ā, B is inverted to   , and the OR is 

changed to an AND.  The new expression on the output of the gate becomes      , which indicates that 

the output is significant when    is logic 1 AND    is logic 1, that is, when A is logic 0 and B is 

logic 0,  The equivalence of            and          is shown in truth tables 30 and 31.   

 
FIG. 57. 

A   B A + B             A   B           .   

0   0 0 1  0   0 1   1 1 

0   1 1 0  0   1 1   0 0 

1   0 1 0  1   0 0   1 0 

1   1 1 0  1   1 0   0 0 

 Table 30.  TRUTH TABLE FOR           . TABLE 31.  TRUTH TABLE      . 

It should be realised that De Morgan′s Laws (identities 14 and 15) can be written as follows, 

without altering their meaning.   

                            =                              (identity 14) 

                                     =                            (identity 15) 

14.12 



ELECTRONIC  LOGIC  PRINCIPLES  1 

 31 

Some examples of the applications of De Morgan′s Laws are as follows.   

Example 1.  Simplify                   .   

Applying identity 15 (           =      )   

=          .  (answer).   

When applying De Morgan′s Laws to complex expressions, it is essential that parts of the 

expressions which are bracketed, or would normally be considered as being bracketed, are 

considered as complete units until all ″De Morganising″ has been completed, then the units can be 

simplified.  This is demonstrated in example 2.   

Example 2.  Simplify                     .   

Since an AND function takes precedence over an OR function in a Boolean expression, A.B and C.D 

are considered as two separate units for the application of De Morgan′s Laws, as follows:-  

Let x = A.B and,  

    y = C.D.   

Substitute x and y into the expression  

      =             

Apply identity 15 (           =      ) by substituting x for A, and y for B.   

      =       

Re-substitute A.B for x and C.D for y  

      =         .           

Substitute    +    for         ;  and    +    for          (identity 14)  

      = (   +   ).(    +   ) (Answer). 

Generally, the procedure shown in example 2 can be simplified by mentally recognising the units 

in an expression, and then applying De Morgan′s Laws direct to the expression, and shown in 

examples 3 and 4.   

Example 3.  Simplify                                     .   

As (C + D) and (E + F) are bracketed, they are considered as complete units.  

Apply identity 14 (         =    +   ) by substituting (C + D) for A, and (E + F) for B.   

=            +            .         Substitute       for           ;  and       for            (identity 15)  

=       +       (Answer) 

Example 4.  Simplify                                   

(A + B + C) and (D) are considered as separate units.   

Apply identity 14 (         =    +   ) by substituting (A + B + C) for A and (D) for B.   

=                    +     

Substitute          for                    (identity 14)   

=          +    (Answer) 

Sometimes further simplification can be applied after De Morgan′s Laws have been used on an 

expression, as shown in example 5.   

Example 5.  Simplify                               

In this case          and          are considered as complete units.   

Apply identity 14 (         =    +   ) by substituting          for A, and          for B   

=               +                

= A.B + A.C 

Simplify this by applying identity 13.   

= A.(B + C) (Answer).   

Further examples on De Morgan′s Laws are contained in Question 11 on page 40.   

14.13 
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15. LOGIC SYMBOLS. 

A variety of logic symbols are used in the documentation provided with logic equipment 

supplied to the department.  Some of these symbols are shown below.  The figures shown in 

some of the symbols indicate the number of inputs which must be at logic 1 to activate the gate.   

 
 

AND GATE SYMBOLS. 

 
 

OR GATE SYMBOLS. 

 
 

INVERTER SYMBOLS. 

 
 

NAND GATE SYMBOLS. 

 
 

NOR GATE SYMBOLS. 

FIG. 59.  LOGIC SYMBOLS. 
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16. TEST  QUESTIONS. 

Determine whether the outputs of the circuits in Fig. 60 are logic 1 or logic 0.  (ANS on 

page 40).   

 
 

(a) 

 
 

(b) 

 
 

(c) 

 
 

(d) 

 
 

(e) 

FIG. 60. 

Determine whether the outputs of the circuits in Fig. 61 are logic 1 or logic 0.  (ANS on 

page 40).   

 
 

(a) 

FIG. 61. 

Q.1 

Q.2 
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(contd.)   

 
 

(b) 

 
 

(c) 

 
 

(b) 

FIG. 61.  (contd.) 

Determine whether the outputs of the circuits in Fig. 62 are logic 1 or logic 0.  What 

relationship exists between A and    ?  (ANS on page 40).   

 

 (a) (b) 

 

 (a) (b) 

FIG. 62. 

(a) Draw the logic diagram described by the following expressions.   

   (ANS on page 40). 

  (i)     A.B + C   

 (ii)     A.C + A.B   

(iii)         +        

Q.2 

Q.3 

Q.4 
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(b) Write Boolean expressions which describe the logic circuits shown in Fig. 63  

   (ANS on page 41). 

  (i)  

 

 (ii)  

 

(iii)  

 

 (iv)  

 

  (v)  

 

FIG. 63. 

Q.4 
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(c) Referring to Fig. 64 cross pout the incorrect answers in the following statements for 

the output condition on D.  (ANS on page 42).   

     logic 0 

  (i) If A = logic 0, D = depends on other inputs  

     logic 1   

     Logic 0 

 (ii) If B = logic 0, D = depends on other inputs  

     logic 1   

     Logic 0 

(iii) If C = logic 0, D = depends on other inputs  

     logic 1   

 
FIG. 64. 

(d) Referring to Fig. 65 cross pout the incorrect answers in the following statements for 

the output condition on F.  (ANS on page 42).   

     logic 0 

  (i) If B = logic 0, F = depends on other inputs  

     logic 1   

     logic 0 

 (ii) If C = logic 0, F = depends on other inputs  

     logic 1   

     logic 0 

(iii) If A,B and C are F = depends on other inputs  

       all logic 1     logic 1   

     logic 0 

 (iv) If D = logic 1, and F = depends on other inputs  

         E = logic 1     logic 1   

 
FIG. 65. 

Q.4 

Q.4 
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Construct a truth table for the circuit in Fig. 63 (ii).  (ANS on page 42).   

Determine the logic condition on the outputs of the circuits in Fig. 66.  Show the logic 

condition of the intermediate pints in each circuit.  (ANS on page 42).   

 
 

(a). 

 
 

(b). 

 
 

(c). 

 
 

(d). 

FIG. 66. 

Q.5 

Q.6 
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(a)  What function is performed by the switch contacts in Fig. 67?  (ANS on page 43).   

 

 (a) (b) 

FIG. 67. 

(b)  What function is performed by the logic circuit in Fig. 68?  (A Truth Table should  

be used as an aid to determine the function).   

 
 

FIG. 68. 

(c)  What functions are performed by the logic circuits in Fig. 69?  (Truth Tables should be 

used as an aid to determine the functions).   

 
 

(i). 

 
 

(ii). 

FIG. 69. 

Q.7 
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Determine the logic condition at the output of the circuits in Fig. 70.  Show the logic 

condition of the intermediate points in each circuit.  (ANS on page 43).   

 
 

(a). 

 
 

(b). 

 
 

(c). 

FIG. 70. 

Simplify the following expressions  (ANS on page 44).   

(a)  A.B.Ā + C.B.C   

(b)  A + B + Ā + B   

(c)  B.(C + 1).C.B 

Simplify the following expressions  (ANS on page 44).   

(a)                     

(b)                 

(c)    Ā         Ā              .   

Q.8 

Q.9 
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Simplify the following expressions  (ANS on page 44).   

(a)                 

(b)                           

(c)                                                            

17.  ANSWERS TO TEST QUESTIONS 

ANS.1 (a) D = 0 (b) D = 0 (c) D = 1   

 (d) G = 0  (The output of G2 is logic 0, therefore one of the inputs to G3 is logic 0.   

              All the inputs of G3 would have to be at logic 1 to obtain a logic 1 output).   

 (c) J = 1   

ANS.2 (a) C = 1 (b) C = 0 (c) D = 1   

 (b) H = 1  (The output of G1 is logic 1, therefore, one of the inputs of G3 is logic 1.   

              G3 only needs one of its inputs at logic 1 to produce a logic 1 output).   

ANS.3 (a)    = 0 (b)    = 0   

 (c) Ā = 1,    = 0,      =    A has been inverted twice and a double inversion  
                             restores an expression back to its original form.   

 (d) Ā = 0,    = 1   

ANS.4 (a) (i) The expression A.B + C means that A and B are ANDed together and the output  

          (A.B) of the AND gate is ORed with C.   

 

    (ii) The expression A.C + A.B means that A and B are ANDed together, A and C are ANDed  

          together, and the outputs of both AND gates A.C and A.B are ORed together.   

 

Q.11 
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ANS.4 (a) (iii)  

 

ANS.4 (b) Each of the figures in Q4(b) has been reproduced to show how the final expression is  

             solved by progressively considering the intermediate points.   

  (i)  

 

 (ii)  

 

(iii)  

 

 (iv)  

 

  (v)  
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ANS.4 (c) Referring to Fig. 64.   

  (i) If A = 0,  D = 1   

 (ii) If B = 0,  D = 1   

(iii) If C = 0,  D depends on other inputs.   

ANS.4 (d) Referring to Fig. 65.   

  (i) If B = 0,  F = 0   

 (ii) If C = 0,  F depends on other inputs.   

(iii) If A, B and C are all 1, F = 1.   

 (iV) If D = 1, and E = 1, F depends on other inputs. 

ANS.5    

Inputs 

 

A   B   C 

Intermediate Points Outputs 

 

                  

0   0   0 1 0 0 

0   0   1 1 0 1 

0   1   0 0 0 0 

0   1   1 0 0 1 

1   0   0 1 1 1 

1   0   1 1 1 1 

1   1   0 0 0 0 

1   1   1 0 0 1 

ANS.6 (a)   

 

 (b)   
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ANS.6  (contd.)   

 (c)   

 

 (d)   

 

ANS.7 (a) The contacts in Fig. 67 (i) perform the comparator function, and those in Fig. 67 (ii)  

      the Exclusive-OR function.   

 (b) The circuit in Fig. 68 performs the Exclusive-OR function. 

 (c) The circuit in Fig. 69 (i) performs the comparator function.  The circuit in Fig. 69  

      (ii) performs the Exclusive-OR function.   

ANS.8 (a)  

 (b)  

 (c) 
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ANS.9 (a) A.B.Ā + C.B.C  ..  ..  (Substitute A.Ā = 0;  C.C = C)   

   = B.0 + B.C      ..  ..  (     ″    (B.0 = 0)   

   =   0 + B.C      ..  ..  (     ″    (0 + B.C = B.C)    

   = B.C 

 (b) A + B + Ā + B  ..  ..  (     ″    (A + Ā = 1;  B + B = B)   

   =     1 + B      ..  ..  (     ″    (B + 1 = 1)   

   = 1 

 (c) B.(C + 1).C.B  ..  ..  (     ″    (C + 1 = 1)   

   = B.1.C.B        ..  ..  (     ″    (B.B = B;  C.1 = c)   

   = B.C 

ANS.10 (a)                   ..  ..  (     ″    (       )   

   = B.(A + 1)      ..  ..  (     ″    (A + 1 = 1)   

   = B.1            ..  ..  (     ″    (B.1 = B)   

   = B 

 (b)              )    ..  ..  (     ″    (       )   

   = A.B.1          ..  ..  (     ″    (B.1 = B)   

   = A.B 

 (c) A.Ā +A.B + Ā.B + B.B + C.A  (″    (A.Ā = 0;  B.B = b)   

   = 0 + A.B + Ā.B + B + C.A 

   = B.(A + Ā + 1) + C.A    (     ″    (A + Ā = 1)   

   = B(.(1 + 1) + C.A   ..  (     ″    (1 + 1 = 1)   

   = B + C.A 

ANS.11 (a)                  

     Apply identity 15.   

   =         

   = A.B (Answer)   

 (b)                          

     Apply identity 14.   

   =               

   = A + B + C + D (Answer) 

 (c)                                                           

     Apply identity 14 (                       ) by substituting (     ) for A, (     )  

      for B and (     ) for C.   

   =                                           

     Apply identity 15 to each unit.   

   =                    

   = A.B + A.C + A.D   

     Apply identity 13.   

   = A(B + C + D) (Answer). 
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