

A U S T R A L I A N P O S T O F F I C E
ETP 0072

TECHNICAL TRAINING PUBLICATION

Engineering Training Group, 6 Flinders Street, Melbourne, Victoria, 3000

═══

E.T.S. 9/1334 1

ELECTRONIC LOGIC PRINCIPLES 1

P UB L IS H E D 1 97 0

(P R E VI OU SL Y H G P 8 0 1)

Page.

 1. INTRODUCTION 1

 2. INTRODUCTION TO LOGIC 2

 3. THE AND FUNCTION 4

 4. AND GATES 5

 5. THE OR FUNCTION 6

 6. OR GATES 7

 7. THE NOT FUNCTION 7

 8. TIMING DIAGRAMS 8

 9. COMBINED LOGIC FUNCTIONS 8

10. CONSTRUCTION OF TRUTH TABLES 11

11. NAND and NOR GATES 12

12. EXCLUSIVE-OR, COMPARATOR AND ADDER 16

13. ALTERNATIVE WORD STATEMENTS AND LOGIC SYMBOLS 20

14. INTRODUCTION TO BOOLEAN MANIPULATION TECHNIQUES 24

15. LOGIC SYMBOLS 32

16. TEST QUESTIONS 33

17. ANSWERS TO TEST QUESTIONS 40

1. INTRODUCTION.

In the past, relay circuits were used extensively in industrial control systems and

automatic telephone exchanges to make decisions and control mechanical operations. Even

the original digital computers were developed using relay logic circuits. Nowadays, electronic

logic circuits are preferred because of their reliability, speed of operation, and size; they

have allowed many systems to be developed that were previously only a theoretical possibility.

The increasing use of electronic logic circuits in telephone, telegraph, and data transmission,

automatic telephony, radio supervisory equipment, measuring instruments, and mail handling

equipment, means that the technician of the future must have an understanding of electronic logic

principles and techniques. This paper explains how electronic circuits can make the decisions

previously entrusted to relay contact arrangements. The paper Electronic Logic Principles 2

explains how information is stored and transmitted in electronic logic systems.

At the time of writing, there is no universally accepted standard for the use of terms,

symbols, and notations in logic equipment. Until a universal standard is adopted, and

observed, the following practices generally apply in this, and other papers of the series:-

The word ″logic″ is used as a noun or adjective as required.

Tables variously termed ″Tables of Combination″, or ″Tables of Possibilities″ are

termed ″Truth Tables″.

Logic 1 and logic 0 are used generally, although the use of H (high) and L (Low)

as an alternative is briefly explained.

Since many different symbols exist in the field, one type only has been chosen for use

throughout the paper; other equivalent symbols are shown on page 32.

1.1

1.2

ELECTRONIC LOGIC PRINCIPLES 1

 2

2. INTRODUCTION TO LOGIC.

BINARY VARIABLES. Aristotle, the Greek philosopher, made a study of logic and developed it

as a tool for solving philosophical problems. In the late 1930s bivalent, or two-state

logic was adapted for analysing multi-contact networks in automatic telephone equipment, and it is

now used in the design and understanding of electronic logic equipment.

Bivalent (two-state) logic uses a binary variable which:-

Can have only two possible conditions (or states).

Must be either in one condition or the other.

Is never in both conditions at the same time.

Examples of the use of binary variables in various types of bivalent logic applications are:-

To philosophers a statement is either TRUE or FALSE

Switches or relay contacts are either CLOSED or OPEN

An electronic logic signal is either at ONE DEFINED or ANOTHER DEFINED

 VOLTAGE LEVEL VOLTAGE LEVEL

This paper is concerned with the application of bivalent logic or electronic circuits using two

defined voltage levels for the binary variable.

DERIVATION OF VOLTAGE LEVELS IN ELCTRONIC LOGIC CIRCUITS. The circuit arrangement in

Fig. 1a is often used to develop the defined voltage levels in electronic logic circuits.

SC1 and RL form a voltage divider, where the resistance of SC1 determines the output voltage. SC1

is operated as a switching transistor which is either saturated (ON), or cut-off (OFF). When the

transistor is saturated (Fig. 1b), its emitter to collector resistance is very small (assumed to

be negligible), and 0 volts is extended to the output. This is one defined voltage level of the

binary variable. When the transistor is cut-off (Fig. 1c) its emitter to collector resistance is

high (assumed to be an open-circuit) and NO current flows through RL. Since there is no potential

drop across RL, the supply voltage Vcc is extended to the output. This is the other defined

voltage level of the binary variable.

 (a) (b) (c)

FIG. 1. DERIVATION OF VOLTAGE LEVEL.

LOGIC 1 AND LOGIC 0. For convenience, the two states of a binary variable are assigned logic

symbols, such as the binary notations 1 and 0, or H and L. In practice, the symbols 1 and 0

are commonly used. Either of the two states of the binary variable can be assigned logic 1, but

it is usual for:-

Logic 1 to represent (a) a TRUE or SIGNIFICANT statement.

(b) a CLOSED switch or contact.

Logic 0 to represent (a) a FALSE or INSIGNIFICANT statement.

(b) an OPEN switch or contact.

In electronic logic systems, one of the two defined voltage levels is assigned logic 1, and the

other logic 0. Once the logic significance has been defined, it is usual for it to be maintained

throughout a system.

2.1

●

●

●

2.2

●

●

●

2.3

2.4

ELECTRONIC LOGIC PRINCIPLES 1

 3

POSITIVE AND NEGATIVE LOGIC. When the more positive voltage is assigned logic 1, and the

less positive voltage is assigned logic 0, the system is said to use ″positive″ logic.

Examples of positive logic are shown in Fig. 2a. When the more negative voltage is assigned logic

1, and the less negative voltage is assigned logic 0, the system is said to use ″negative logic″.

Examples of negative logic are shown in Fig. 2b.

Some manufacturers avoid giving one voltage level more significance than the other, and designate

the more positive voltage ″High″ (H) and the less positive voltage ″Low″ (L).

(a) Examples of Positive Logic.

(b) Examples of Negative Logic.

FIG. 2. POSITIVE AND NEGATIVE LOGIC.

BOOLEAN ALGRBRA. In normal algebra, lengthy word statements are written in shorthand form

by using alphabetical characters to represent the variables, and standard arithmetical

symbols to show the relationship between the variables. For example, Ohms law states that the

current in a circuit is directly proportional to the applied voltage, and inversely proportional

to the resistance of the circuit. Algebraically, this lengthy statement is written as I =

,

where I, E and R are the variables; and since I depends on the values of E and R, it is the

dependent variable. The ″equals″ and ″division″ signs indicate the relationship between the

variables.

In electronic logic circuitry, the lengthy word statements used to describe logic relationships

are expressed in shorthand form with Boolean algebra; named after the originator George Boole.

In Boolean algebra, alphabetical characters such as A, B, C etc., are used to represent the

binary variables, and arithmetical symbols show the relationships between the variables. The

arithmetical symbols used in Boolean algebra have the following meanings:-

The symbol (.) represents the word AND.

The symbol (+) represents the word OR.

The symbols (
—
) or (′) represents the word NOT. The (′) is termed a ″Prime″.

Note, that the (+) sign loses its normal arithmetical meaning when used in Boolean algebra.

The following example shows how Boolean algebra is used to express the relationship in a logic

circuit. Fig. 3 is a block diagram representing a logic circuit having three inputs A, B and C.

The logic condition on output D is dependent on the logic conditions on inputs A, B and C. Now

assume that the following word statement describes the logic relationship of the circuit:-

D is logic 1 when A is logic 1 AND B is logic 1 AND C is logic 1.

This word statement is expressed in Boolean form by:-

D = A AND B AND C.

Replacing the AND with (.) the equation becomes:-

D = A.B.C.

FIG. 3. LOGIC CIRCUIT.

Note, that the word ″when″ in the word statement is replaced by an equal sign (=) in the Boolean

equation, because the condition on output D is dependent on the conditions on inputs A, B and C.

The term A.B.C is a Boolean expression which describes the function performed by the logic

circuit preceding the output.

The conditions required to make the output of the logic circuit significant are more readily seen

from the Boolean expression than from the word statement. It is essential that you should become

familiar with interpreting the Boolean expressions used in logic diagrams. Word statements are

very limited in their application, as they are too cumbersome when used to express the logic

relationships in complete logic circuits.

2.5

2.6

●

●

●

ELECTRONIC LOGIC PRINCIPLES 1

 4

3. THE AND FUNCTION.

The function of any circuit made up of switches, or contacts, is to provide a complete circuit

path when specified conditions exist. Fig. 4 is the circuit of two switches (A and B)

connected so that the circuit (C) is complete when switch A AND switch B are closed. It therefore

performs the AND function.

FIG. 4. SWITCHES CONNECTED TO PERFORM AND FUNCTION.

TRUTH TABLES. The possible combinations of the states of the variables in a circuit which

performs a logic function are often tabulated in tables using the logic symbols 1 and 0.

Tables of this type are called truth tables, because they show which combination, or combinations,

make the dependent variable true (logic 1),. They are also known as tables of possibilities, or

tables of combinations.

TRUTH TABLE FOR AND FUNCTION. Table 1 is the truth table which gives the circuit
possibilities of the three binary variables shown in Fig. 4. These variables are:-

A, which is either CLOSED (logic 1) or OPEN (logic 0),

B, which is either CLOSED (logic 1) or OPEN (logic 0), and

C, the complete circuit, which is either CLOSED (logic1) or OPEN (logic 0).

All possible combinations of A and B are listed in the first two columns of the truth table, and

the condition of C for each combination is listed in the third column. Fig. 5 shows all the

possible combinations of the variables in circuit form.

FIG. 5 CIRCUIT POSSIBILITIES.

 A B C

... C open (Logic 0) 0 0 0

... C open (Logic 0) 0 1 0

... C open (Logic 0) 1 0 0

... C closed (Logic 1) 1 1 1

TABLE 1. TRUTH TABLE

FOR AND FUNCTION.

WORD STATEMENT OF AND function. Table 1 is the truth table for an AND function, and it can
be summed up with the following word statement:-

C is logic 1 when A is logic 1 AND B is logic 1.

BOOLEAN EQUATION OF AND function. Boolean algebra is used to express this statement in
shorthand, as follows:-

 C is the dependent binary variable,

 C = A.B where A and B are binary variables,

 The symbol (.) is read as AND.

In practice the (.) may be omitted and the expression written as AB.

Note that the equation expresses the condition which applies to the circuit in its logic 1 state

only. For C to be logic 0, it is not necessary for both A and B to be logic 0.

3.1

3.2

3.3

●

●

●

3.4

3.5

ELECTRONIC LOGIC PRINCIPLES 1

 5

4. AND GATES.

The function of an electronic gate circuit is to provide a specified voltage level at its

output, when some specified input voltage conditions exist. An AND gate is defined as an

electronic logic circuit which provides a logic 1 voltage level on its output when all inputs are

at the logic 1 voltage level. Fig. 6 shows the symbol used to represent a two input AND gate in

logic diagrams in this paper. Other AND gate symbols are shown in page 32.

The lines on the symbol represent single wires. Those on the left are inputs to the gate, and the

one on the right is the output. When this symbol is used the power supply wiring is not shown.

FIG. 6. ELECTRONIC AND GATE SYMBOL.

EXPRESSION OF AND GATE OPERATION. In the AND gate shown in Fig. 6 there are three binary
variables, namely:-

A and B, the inputs, which are either at the voltage level representing logic 1,

or, the voltage level representing logic 0.

C, the output and dependent variable, which is either at the voltage level representing

logic 1, or the voltage level representing logic 0, depending on the logic levels on

the inputs.

In Table 2, the possible combinations of input conditions are tabulated, together with the logic

conditions which result on the output.

INPUTS OUTPUT

C A B

0 0 0

0 1 0

1 0 0

1 1 1

TABLE 2. TRUTH TABLE FOR AND GATE.

Since output C is logic 1, only when input A is logic 1 AND input B is logic 1, the AND

function is performed. Therefore, the operation of an AND gate can be expressed in Boolean form

by:-

 C is the output,

 C = A.B where A and B are the inputs,

 The symbol (.) is read as AND.

AND GATE rule. The following rule allows the logic significance of the output of an
electronic AND gate to be determined. It applies to all AND gates, irrespective of the number of

inputs connected.

The output of an AND gate is:-

logic 1 when ALL inputs are logic 1.

logic 0 when ANY input is logic 0.

Question 1 on page 32 is an exercise on AND gates, and should be attempted before reading further.

4.1

4.2

●

●

4.3

●

●

ELECTRONIC LOGIC PRINCIPLES 1

 6

5. THE OR FUNCTION.

Fig. 7 shows two switches connected so that the circuit C is complete, or significant, when

switch A OR switch B is closed. It therefore performs the OR function.

FIG. 7. SWITCHES CONNECTED TO PERFORM OR FUNCTION.

TRUTH TABLE FOR OR FUNCTION. Three binary variables are represented by the circuit in Fig. 7,
these are:-

A, which is either CLOSED (logic 1) or OPEN (logic 0),

B, which is either CLOSED (logic 1) or OPEN (logic 0),

C, the complete circuit, which is either CLOSED (logic1) or OPEN (logic 0), and is the

dependent variable.

Table 3 shows the possible combinations of A and B and the condition of C for each combination

A B C

0 0 0

0 1 1

1 0 1

1 1 1

TABLE 3. TRUTH TABLE FOR OR FUNCTION.

WORD STATEMENT OF OR FUNCTION. A word statement summing up the conclusion reached from
Table 3 states that:-

C is logic 1 when A is logic 1 OR B is logic 1.

BOOLEAN EQUATION FOR OR function. Boolean algebra is used to express this statement in
shorthand form as follows:-

 C is the dependent binary variable,

 C = A + B where A and B are binary variables,

 The symbol (.) is read as AND.

Another way of expressing C = A + B is:-

C = A

C = B

This does not mean that C equals A, and C equals B; it means that C is dependent on the logic

state of A only OR B only.

5.1

5.2

●

●

●

5.3

5.4

ELECTRONIC LOGIC PRINCIPLES 1

 7

6. OR GATES.

An OR gate is defined as an electronic logic circuit which provides a logic 1 voltage level

on its output when any input is at the logic 1 voltage level. OR gates are often represented

in logic diagrams by the symbol shown in Fig. 8. Other OR gate symbols are given on page 32.

EXPRESSION OF OR GATE OPERATION. The behaviour of an electronic OR gate for all possible
combinations of input logic levels is given in Table 4.

FIG. 8. ELECTRONIC OR GATE SYMBOL.

INPUTS OUTPUT

C A B

0 0 0

0 1 0

1 0 0

1 1 1

TABLE 4. TRUTH TABLE FOR OR GATES.

FIG. 8. NAND GATES AS SR FLIP-FLOP.

Since the output C is logic 1 when either input A OR input B is logic 1, (or both are logic 1) the

OR function is performed. Therefore, the operation of an OR gate can be expressed in Boolean

form by:-

 C is the output,

 C = A + B where A and B are the inputs,

 The symbol (+) is read as OR.

OR GATE RULE. The output of an OR gate is:-

logic 1 when ANY inputs are logic 1.

logic 0 when ALL input is logic 0.

Question 2 on page 33 is an exercise on OR gates, and should be completed before reading further.

7. THE NOT FUNCTION.

The NOT function is the ″negation″ or the ″inversion″ of the state of a variable, and the
electronic logic element which performs it is called an inverter. When the input of an

inverter is logic 1, its output is logic 0 (that is, NOT logic 1). Conversely, when its input is

logic 0, its output is logic 1 (that is, NOT logic 0). It therefore inverts the logic condition on

its input.

Fig. 9 shows a symbol used for an inverter, and Table 5 is the Truth table. When the input of an

inverter is designated A, the inverted output is designated Ā or A′, which is read as NOT A or A

NOT. A and Ā are referred to as the complements of each other. Other inverter symbols are

given on page 32.

FIG. 9. INVERTER SYMBOL.

INPUT

A

OUTPUT

C

0 1

1 0

TABLE 4. TRUTH TABLE FOR INVERTER.

Question 3 on page 34 should now be completed.

6.1

6.2

6.3

●

●

7.1

ELECTRONIC LOGIC PRINCIPLES 1

 8

8. TIMING DIAGRAMS.

In logic circuits, it often occurs that the signals appearing at the gate inputs are of

various pulse lengths, and not repetitive. With AND gates it is necessary that all inputs

be significant at the same time for the gate output to become significant. A timing diagram

enables us to determine when the output of a gate becomes significant, and also the output pulse

length.

Fig. 10 shows an example of the input conditions applied to an AND gate and the resulting output.

It is assumed that the significant condition (logic 1) is a positive voltage level, and logic 0

is zero volts. (This is positive logic).

FIG. 10. AND GATE TIMING DIAGRAM.

The graphs in Fig. 10 show that the output of the AND gate is logic 1 only when both inputs are

logic 1.

Now assume that the same signals are applied to an OR gate, as shown in Fig. 11. In this case,

the output is significant when either input A OR input B is significant.

FIG. 11. OR GATE TIMING DIAGRAM.

9. COMBINED LOGIC FUNCTIONS.

GENERAL. Electronic logic circuits are required to provide a specified logic condition on

their output when some special input conditions exist. Logic circuits are made up by

combining elements which perform the basic AND, OR and NOT functions.

EXAMPLE OF COMBINED LOGIC FUNCTION. The following example shows how a combined logic circuit

is developed. The logic circuit associated with the mechanical equipment in Fig. 12 is

required to provide a pulse of logic 1 when an article exceeding four inches in height, or six

inches in length, passes along the conveyor. The input information is generated by light beams,

and the output pulse could be used to control the operation of a solenoid which initiates some

mechanical operation.

The light detectors A, B and C provide a logic 1 to the logic circuit when an article breaks a

beam. Light beam A is broken by any article higher than four inches. Light beams B and C are

placed so that articles longer than 6″ break both beams at the same time.

8.1

9.1

9.2

ELECTRONIC LOGIC PRINCIPLES 1

 9

FIG. 12. DETECTION OF OVERSIZE ARTICLES.

A logic circuit which will perform the desired function is developed by making a logic word

statement of the function to be performed, expressing it as a Boolean equation, and constructing

a circuit from this Boolean equation.

The function required of the logic circuit is expressed by the following word statement:-

The output D must be logic 1 whenever A is logic 1 OR both B AND C are logic 1.

This means that D is logic 1 whenever the light beam to A is broken, OR when the light beams

to B and C are both broken at the same time.

As logic circuits become more complex, the word statement of the function performed becomes more

involved, and the advantage of expressing the function in shorthand is more obvious. In this case

the word statement of the function is expressed in Boolean form as follows:-

D = A + B.C

ELECTRONIC LOGIC CIRCUIT. Fig. 13 is the logic diagram of an electronic circuit which uses an

AND and an OR gate to perform the function required in Fig. 12. The logic diagram is drawn by

arranging the gates and connections so that the signal A + B.C is produced at the output. To do

this, B and C are connected to the AND gate so that the signal B.C (B AND C) is developed at its

output. The signal B.C and the signal A are connected to the OR gate so that its output, which

is the combined output of the circuit, is A + B.C (A OR B AND C).

FIG. 13. ELECTRONIC LOGIC CIRCUIT.

OPERATION OF CIRCUIT. At normal, that is with no light beam broken, the logic levels indicated

in Fig. 13 apply, and the output is at logic 0. Articles within the height specification pass

without breaking light beam A, so signal A stays at logic 0. Although light beams B and C are

both broken when an article within the length specification passes, they are broken at different

times, so signals B and C are logic 1 at different times causing signal B.C to stay at logic 0.

Normal articles, therefore, allow the output to remain at logic 0.

When a high article passes, A goes to logic 1, causing output D to go to logic 1. Also, a long

article causes B and C to go to logic 1 together, thus producing logic 1 at output (B.C) of the

AND gate, which in turn causes output D to go to logic 1. A logic 1 on output D activates a

mechanical function which rejects the oversize article.

ELECTRONIC LOGIC PRINCIPLES 1

 10

INTERMEDIATE POINTS. The intermediate points on logic diagrams are often designated with a

Boolean expression which describes the logic function of the preceding equipment. For example

B.C designates an intermediate point in Fig. 13, and indicates that B and C have been ANDed

together in the previous stage. Although an intermediate point can be at logic 1, or logic 0,

depending on the logic states of the inputs, the expression at an intermediate point can be

used to determine when that point is at logic 1. For example, point B.C is logic 1 when B is

logic 1 AND C is logic 1. If B and C do not meet these conditions the intermediate point B.C is

at logic 0.

CONVERTING BOOLEAN EXPRESSIONS TO LOGIC DIAGRAMS. It is essential that you should be able

to convert Boolean expressions to logic diagrams, and vice versa.

One method of converting Boolean expressions to logic diagrams is to use the following steps, in

the order given:-

Combine any bracketed terms with the type of gate indicated by the sign within the

brackets.

Combine any ANDed terms.

Combine any ORed terms.

As an example, Fig. 14 is the logic diagram derived from the Boolean expression A.(B + C) + D.

The first step in drawing this diagram is to combine the bracketed signals B and C in an OR gate

(G1) to obtain the signal (B + C). Next, signal A and signal (B + C) are combined in an AND

gate (G2) to obtain the signal A.(B + C). Then, signal A.(B + C) and signal D are combined in an

OR gate (G3) to obtain the output signal A.(B + C) + D.

FIG. 14. LOGIC DIAGRAM REPRESENTING A.(B + C) + D.

Boolean expressions not containing bracketed expressions are converted to logic diagrams by

considering ANDed functions first and then the ORed functions. For example, A + B.C is represented

by the logic diagram shown in Fig. 12.

FIG. 15. LOGIC DIAGRAM REPRESENTING A + B.C.

BOOLEAN EXPRESSIONS FROM LOGIC DIAGRAMS. To derive a Boolean expression from a logic

diagram, it is necessary to start from the inputs and progressively work towards the output,

establishing a Boolean expression for each intermediate point. For example, consider the logic

diagram shown in Fig. 16. First, the output of the inverter is established as Ā. Signal Ā and

signal B are ORed in gate G1 to establish the intermediate point Ā + B. Next, signal Ā + B and

signal C are ANDed in gate G2 to obtain the intermediate point (Ā + B).C. The signal (Ā + B).C

and signal D are then ORed in gate G3 to obtain the output signal (Ā + B).C + D.

FIG. 16. (Ā + B).C + D.

9.3

9.4

●

●

●

9.5

ELECTRONIC LOGIC PRINCIPLES 1

 11

BRACKETS. In general, the following rule should be observed if brackets are to be used in a

Boolean expression. If an OR function occurs, and the output of this is ANDed with another

term, it is necessary to place brackets around the ORed terms. The presence or absence of brackets

in a Boolean expression can completely change the logic circuit represented by the expression.

For example, the expression A + B.C has a different logic circuit to the expression (A + B).C, as

shown in Figs 17(a) and 17(b) respectively.

(a) Logic circuit of A + B.C

(b) Logic circuit of (A + B).C

FIG. 17. THE IMPORTANCE OF BRACKETS.

Question 4 on page 34 should now be attempted.

10. CONSTRUCTION OF TRUTH TABLES.

GENERAL. Truth tables are used to record all the possible combinations of the logic

conditions in a circuit, and the function of a logic circuit can easily be established by

this means. Where the function of a logic circuit is not easily established from the Boolean

expression, or from the circuit itself, a truth table should be developed. To assist in later

studies of complex logic circuits, you should form the habit of developing and interpreting truth

tables for all circuits.

This paragraph describes a simple method of constructing a truth table to ensure that all

possible input combinations are included. When constructing truth tables, the number of

input combinations is equal to 2n, where n is the number of inputs. Table 6, which is the truth

table for the circuit in Fig. 13, is used as an example.

1. Head the column inputs, intermediate points,

and output, as shown in Table 6. (Intermediate

points are not always shown in truth tables,

but assist in determining the output conditions).

2. Designate a column for each input, the

intermediate points, and the output.

3. Determine the number of combinations. In this

case the number of combinations is 23 = 8

because there are three inputs in Fig. 13.

The number of combinations determines the

number of horizontal lines in the truth table.

4. Commence all input columns with zeroes.

5. Complete the last input column (in this case

C), by changing the condition of the binary

variable on each line.

6. Complete the second last input column (in this

case B) by changing the condition of the binary

variable after every two combinations.

Inputs

A B C

Intermediate

Point

Output

(D)

A + B.C B.C

0 0 0 0 0

0 0 1 0 0

0 1 0 0 0

0 1 1 1 1

1 0 0 0 1

1 0 1 0 1

1 1 0 0 1

1 1 1 1 1

Table 6. TRUTH TABLE FOR FIG. 13.

7. Complete the next input column (in this case A) by changing the condition of the binary

variable after every four combinations.

8. Record the conditions of the intermediate points. In the example, intermediate point B.C

is logic 1 only when B is logic 1 AND C is logic 1. If either B or C are at logic 0 the

intermediate point B.C is at logic 0.

9. Record the output condition for each combination of input conditions. In the example, D is

logic 1 when A is logic 1 OR when the intermediate point B.C is at logic 1 (that is,

D = A + B.C).

When more than three inputs are involved, the same principle applies. Each input column, from

last to first has its condition changed according to the binary number pattern. For example, the

fourth last input column of a truth table would have the condition of the binary variable changed

every eight combinations, and the fifth last column every 16 combinations, and so on.

Question 5 on page 37 is an exercise on constructing truth tables.

9.6

10.1

10.2

ELECTRONIC LOGIC PRINCIPLES 1

 12

11. NAND AND NOR GATES.

GENERAL. Electronic AND and OR gates are usually passive networks containing diode and

resistors only and, therefore, have an output power which is less than the input power. A

desirable feature of logic gates is that their output signal should be capable of operating a

number of other gates. The limited output power from passive AND and OR gates prevent them from

doing this without some sort of amplification. For this reason, gate circuits have been developed

which provide a transistor amplifier in conjunction with the basic AND and OR gates. Because of

the transistor amplifier connected in the output, the gate provides a logic inversion. An

electronic gate which contains an AND gate with an inverter (transistor amplifier) is called a

NOT AND or NAND gate. An electronic gate which contains an OR gate with an inverter is called a

NOT OR or NOR gate.

Both NAND and NOR gates can be arranged to perform the AND, OR or NOT functions, and in some cases,

complete systems are built up using one type of NAND or NOR gate. Modern NAND or NOR gates are

built in the form of integrated circuits, which can be manufactured more cheaply than AND or OR

gates built from discrete (individual) components. Although the minimum number of elements is

not necessarily achieved in a system built up from modern NAND or NOR gates, these systems have

the advantage that they can be manufactured more economically than a system using discrete

components, and faults are more easily rectified by substituting spare universal NAND or NOR

elements.

NAND GATES. A NAND gate is defined as an electronic circuit which provides a logic 0 voltage
level on its output when all inputs are at the logic 1 voltage level. Fig. 18a is a symbol

used to represent NAND gates in logic diagrams; other NAND gate symbols are shown on page 32. A

small circle, called a state indicator, is added to an AND gate symbol to indicate an inversion

following the AND function. Fig. 18b is an equivalent circuit of a NAND gate using basic AND and

NOT elements.

Since the output of a NAND gate is the inverted output of the AND function A.B, it is written ,

which is stated as (A AND B) NOT, or NOT (A AND B). The expression indicates, therefore, that
the two input signals A and B are ″ANDed″ together and the result is inverted. If the result of

A.B is logic 1, is logic 0 (that is, NOT logic 1). If the result of A.B is logic 0, is
logic 1 (that is, NOT logic 0). This is verified in table 7 which is the truth table for a NAND

gate. Although signal in Fig. 18b is not always available as an output, it often helps to
include this intermediate point when considering NAND gates.

(a) Symbol

(b) Logic Equivalent Circuit.

FIG. 18. ELECTRONIC NAND GATE.

Inputs

A B

 Output

 A.B

0 0 0 1

0 1 0 1

1 0 0 1

1 1 1 0

Table 7. NAND GATE TRUTH TABLE.

NAND GATES USED TO PERFORM THE NOT FUNCTION. When only one input to a NAND gate is used, and

the others have a permanent logic 1 connected to them, the NOT function is performed. The

output is dependent on the condition on the effective input, and is the inverse of it. In Fig. 19

the second input is permanently tied to logic 1, and the conditions which exist when A is logic 0

are shown above the line. Similarly, the conditions which exist when A is logic 1 are shown below

the line. These conditions are recorded in Table 8. Since the output in each case is the

inverse of the input, the output is A NOT, (Ā).

11.1

11.2

11.3

ELECTRONIC LOGIC PRINCIPLES 1

 13

FIG. 19. NAND GATE USED AS INVERTER.

INPUT

A

OUTPUT

Ā

0 1

1 0

TABLE 8. TRUTH TABLE FOR FIG. 19.

When NAND or NOR gates are used to perform a logic function, a Boolean expression is obtained

at the output which describes the elements involved, but does not necessarily describe the

function in its simplest form. For example, Fig. 21 shows how three NAND gates are connected to

perform the OR function. The Boolean expression at the output of this circuit indicates the
elements used, but does not describe the basic function of the circuit, which is A + B. Two

methods which can be used to prove the equivalence of two Boolean expressions, (that is, to prove

that = A + B) are:-

Comparison of the truth tables of each expression. If all input combinations and the

resulting output conditions in each truth table are the same, the expressions are

equivalent.

Use of Boolean manipulation techniques. An introduction to basic Boolean manipulation

techniques is given in Section 14 of this paper.

NAND GATE COMBINATION TO PERFORM THE AND FUNCTION. In Fig. 20 two NAND gates are combined

to perform the AND function.

FIG. 20. NAND GATE COMBINATION WHICH PERFORMS THE AND FUNCTION.

Since only one input to the second NAND gate is used, and the other is permanently connected to

logic 1, this gate performs the NOT function only. Therefore, the signal A.B produced in the

first gate is inverted twice and appears in the output. Tables 9 and 10 are the truth tables for

Fig. 20 and an AND gate, respectively. Since the input combinations in the tables are arranged

in the same order, and the output results are the same, both circuits perform the AND function.

Also, because Fig. 15 and the AND gate both perform the same function, is equivalent to A.B,

that is, = A.B. From this it can be seen that a double inversion restores an expression
back to its original form.

Inputs

A B

Intermediate

Point

Output

 Inputs

A B

Output

A.B A.B

0 0 0 1 0 = 0 0 0

0 1 0 1 0 0 1 0

1 0 0 1 0 1 0 0

1 1 1 0 1 1 1 1

 Table 9. TRUTH TABLE FOR FIG. 13. TABLE 10. AND GATE TRUTH TABLE.

11.4

●

●

11.5

ELECTRONIC LOGIC PRINCIPLES 1

 14

NAND GATE COMBINATION TO PERFORM THE OR FUNCTION. Fig. 21 shows how three NAND gates are

combined to perform the OR function. The expression on the output indicates that the
following functions have occurred in the circuit: Signal A is inverted to Ā, signal B is inverted

to , both inverted signals are ″ANDed″ together (), and the output of the AND function is

inverted to . Each of these functions is shown in the circuit. Note that the first two NAND
gates are used as inverters only.

FIG. 21. NAND GATE COMBINATION WHICH PERFORMS THE OR FUNCTION.

Tables 11 and 12 are the truth tables for Fig. 21 and an OR gate, respectively. Since the output

results are the same in each case, the circuits are equivalent. Both perform the OR function.

Also, because Fig. 21 and the OR gate both perform the same function, = A + B.

Inputs

A B

Intermediate

Point

Output

 Inputs

A B

Output

A + B Ā

0 0 1 1 1 0 = 0 0 0

0 1 1 0 0 1 0 1 1

1 0 0 1 0 1 1 0 1

1 1 0 0 0 1 1 1 1

 Table 11. TRUTH TABLE FOR FIG. 21. TABLE 12. OR GATE TRUTH TABLE.

NOR GATES. A NOR gate is defined as an electronic circuit which provides a logic 0 voltage

level on its output when any input is at logic 1. Fig. 22a shows a symbol used to represent

NOR gates. Other NOR gate symbols are shown on page 32. Note that a state indicator is added

to the OR gate symbol to indicate an inversion. Fig. 22b is an equivalent circuit of a NOR gate

using basic OR and NOT logic elements. The expression means that signals A and B are ″ORed″
together and the result inverted.

(a) Symbol.

(b) Equivalent circuit.

FIG. 22. ELECTRONIC NOR GATE.

Although the signal A + B is not usually available as an output, it often helps to include this

intermediate step when considering NOR gates. Table 13 shows the function performed by a NOR

gate.

Inputs

A B

 Output

 A + B

0 0 0 1

0 1 1 0

1 0 1 0

1 1 1 0

Table 13. NOR GATE TRUTH TABLE.

11.6

11.7

ELECTRONIC LOGIC PRINCIPLES 1

 15

NOR GATES USED TO PERFORM THE NOT FUNCTION. The NOT function is performed when one input to

a NOR gate is used and the others are tied to logic 0. In Fig. 23, the conditions which

exist when A is logic 0 are shown above the line. Similarly, the conditions which exist when A

is logic 1 are shown below the line. Since the output in each case is the inverse of the input,

the NOT function is performed.

FIG. 23. NOR GATE USED AS INVERTER.

NOR GATE COMBINATION TO PERFORM THE OR FUNCTION. Fig. 24 shows how two NOR gates are

combined to perform the OR function.

FIG. 24. NOR GATE COMBINATION WHICH PERFORMS OR FUNCTION.

The second NOR gate acts as an inverter, so that the signal A+B produced in the first gate is

inverted twice and becomes the output.

NOR GATE COMBINATION TO PERFORM THE AND FUNCTION. Fig. 25 shows how three NOR gates are

combined to perform the AND function. The first tow gates serve as inverters only, to

produce the signals and . These two signals are ″ORed″ together and the result is inverted to

signal .

FIG. 25. NOR GATE COMBINATION WHICH PERFORMS AND FUNCTION.

Tables 14 and 15 are the truth tables of Fig, 25 and an AND gate, respectively. Since the input

combinations and the output conditions in both tables are exactly the same, Fig. 25 must perform

the AND function. Also, this means that the Boolean expressions and A.B are equivalent,

that is, = A.B.

Inputs

A B

Intermediate

Point

Output

 Inputs

A B

Output

A.B Ā

0 0 1 1 1 0 = 0 0 0

0 1 1 0 1 0 0 1 0

1 0 0 1 1 0 1 0 0

1 1 0 0 0 1 1 1 1

 Table 14. TRUTH TABLE FOR FIG. 21. TABLE 15. OR GATE TRUTH TABLE.

11.8

11.9

11.10

ELECTRONIC LOGIC PRINCIPLES 1

 16

COMPLEX FUNCTIONS USING NAND OR NOR GATES. The development of the basic functions from

NAND and NOR gates tends to indicate that the use of these universal gates is uneconomical.

However, careful design can often lead to complex circuits being made from a similar number of

NAND and NOR gates, to the number required if AND, OR and NOT elements were used.

Fig. 26 shows how the complex function considered in section 9 is performed using NAND gates.

This circuit still performs the function D = A + B.C. The operation of the circuit can be readily

understood if the NAND gate truth table is used in conjunction with the following description.

Whilst all light beams are unbroken, A, B and C are at logic 0, and the output D is at logic 0.

If light beam A is broken, logic 1 is applied to G1, the output of G1 goes to logic 0, and the

output of G3 goes to logic 1. If either B or C go to logic 1, the output of G2 will remain at

logic 1, and the output of G3 remains at logic 0. If both B and C go to logic 1, the output of

G2 goes to logic 0, and the output of G3 goes to Logic 1.

Question 6 on page 37 is an exercise in reading NAND and NOR gate logic diagrams.

FIG. 26. NAND GATE COMBINATION WHICH PERFORMS COMPLEX FUNCTION.

12. EXCLUSIVE-OR, COMPARATOR AND ADDER.

EXCLUSIVE-OR FUNCTION. The function performed by an OR gate is sometimes referred to as the

Inclusive-OR function, because it includes in the conditions which produce a logic 1 output,

the case where both inputs are logic 1. Another type of OR function, known as the Exclusive-OR

function, provides a logic 1 output when only one input is logic 1 and the other logic 0, and it

excludes the condition where both inputs are logic 1. This is expressed as + . The gate
combination in Fig. 27 performs the Exclusive-OR function, and Table 16 shows the output condition

for each combination of inputs. The expression + means that the output is logic 1 when A
is logic 1 AND B NOT is logic 1 (that is, B is logic 0), OR when A NOT is logic 1 (that is, A is

logic 0) AND B is logic 1.

FIG. 27. ECLUSIVE-OR GATE COMBINATION.

Inputs

A B

 Output

 +

0 0 1 1 0 0 0

0 1 1 0 0 1 1

1 0 0 1 1 0 1

1 1 0 0 0 0 0

Table 16. EXCLUSIVE-OR TRUTH TABLE.

11.11

12.1

ELECTRONIC LOGIC PRINCIPLES 1

 17

Another circuit which performs the Exclusive-OR function is shown in Fig. 28. The expression

 is another way of expressing the Exclusive-OR function. Expressed in words it

states that the output is logic 1 when A OR B are logic 1 AND NOT when A AND B are logic 1.

FIG. 28. ALTERNATIVE EXCLUSIVE-OR GATE COMBINATION.

Fig. 29 is a logic symbol which is sometimes used to indicate an Exclusive-OR circuit. The circuit

represented by the symbol may contain gate combinations such as those shown on Figs. 27 and 28.

FIG. 29. EXCLUSIVE-OR SYMBOL.

COMPARATORS. Comparators are special gate combinations which provide a logic 1 output when

their inputs have the same logic condition, that is, when both inputs are at logic 1, or

when both inputs are at logic 0. This function is expressed as . Fig. 30 is a simple

comparator circuit and Table 17 is the truth table for Fig. 30. When A and B are both logic 1,

the top AND gate provides a logic 1 output. When A and B are both logic 0, the signals and
are both logic 1, so the bottom AND gate provides a logic 1 output. The comparator circuit is

said to test for equivalence.

FIG. 30. SIMPLE COMPARATOR.

Inputs

A B

 Output

0 0 1 1 0 1 1

0 1 1 0 0 0 0

1 0 0 1 0 0 0

1 1 0 0 1 0 1

Table 17. TRUTH TABLE FOR FIG. 30.

12.2

12.3

ELECTRONIC LOGIC PRINCIPLES 1

 18

The comparator function is also performed when the Exclusive-OR circuit is followed by an

inverter, as shown in Fig. 31. Table 18 is the truth table for Fig. 31, and shows that

 is obtained at the output.

FIG. 31. COMPARATOR USING EXCLUSIVE-OR AND INVERTER.

Inputs

A B

 Output

 O/P of Exclusive-OR

0 0 0 1

0 1 1 0

1 0 1 0

1 1 0 1

Table 18. TRUTH TABLE FOR FIG. 31.

COMPARATOR USING AND-OR-INVERT COMBINATION. When the signals to be compared and their

complements are available, as is often the case, the AND-OR-INVERT combination shown in

Fig. 32 can be used as a comparator. Table 19 is the truth table for Fig. 32 and shows that

the output of the AND-OR-INVERT combination is exactly the same as that shown in Tables 17 and

18, therefore, the expression is equivalent to .

FIG. 32. COMPARATOR USING AND-OR-INVERT COMBINATION.

Inputs

A B

 Output

0 0 1 1 0 0 0 1

0 1 1 0 0 1 1 0

1 0 0 1 1 0 1 0

1 1 0 0 0 0 0 1

Table 17. TRUTH TABLE FOR FIG. 32.

12.4

12.5

ELECTRONIC LOGIC PRINCIPLES 1

 19

HALF ADDER. Adders are special gate combinations which add binary numbers together. When

two binary digits are added, the possible answers are:-

 0 1 0 1

 0 0 1 1

 __ __ __ __

 00 01 01 10

When adding binary numbers, the answer is split into two components, the sum, which goes in the

right-hand column, and the carry, which is carried into the next most significant column. Notice

that the sum is 1 when one digit is 1 and the other is 0, and that the only time a carry is

produced is when both digits are 1. A circuit which determines the sum and carry when two digits

are added is called a half-adder. Fig. 33 is the basic logic diagram of a half-adder, and Table

20 shows how its function is tabulated in a truth table. The Exclusive-OR gate combination

provides a logic 1 output only when one of the inputs is at logic 1, and is used to determine the

sum. Similarly an AND gate, which needs logic 1 on both inputs to give a logic 1 output, is used

to determine the value of the carry.

For example, if one input is at logic 1 and the other at logic 0, the output of the Exclusive-OR

gate (the sum) is logic 1, and the output of the AND gate is logic 0 (the carry). If both inputs

are at logic 1, the output of the Exclusive-OR gate is logic 0 (the sum) and the output of the AND

gate is logic 1 (the carry).

FIG. 33. HALF-ADDER.

Inputs

A B

Outputs

C S

CARRY SUM

0 0 0 0

0 1 0 1

1 0 0 1

1 1 1 0

TABLE 20. TRUTH TABLE FOR HALF-ADDER.

FULL ADDER. A full-adder is able to add the two digits on the inputs plus the carry from

another adder. Fig. 34 shows that a full-adder contains two half-adders and an OR gate.

Table 21 is the truth table for a full adder. Note that the binary sum of the two inputs and the

carry-in, in the first three columns, produces the result in the last two columns.

An understanding of the operation of the full adder can be gained by considering each input

combination, in turn, through the circuit, and checking that the correct sum and carry-out is

obtained, according to the truth table.

FIG. 34. FULL-ADDER.

Inputs Outputs

A B Carry-in Carry-out Sum

0 0 0 0 0

0 0 1 0 1

0 1 0 0 1

0 1 1 1 0

1 0 0 0 1

1 0 1 1 0

1 1 0 1 0

1 1 1 1 1

TABLE 21. TRUTH TABLE FOR FULL ADDERS.

Question 7 on page 38 is an exercise on comparators and exclusive ORs.

12.6

12.7

ELECTRONIC LOGIC PRINCIPLES 1

 20

13. ALTERNATIVE WORD STATEMENTS AND LOGIC SYMBOLS.

GENERAL. In the preceding sections, the word statements used to explain the operation of

logic elements are based on the logic 1 conditions required to perform a designated function.

Also, the symbols used to represent the elements are derived from the functions performed when

the logic 1 conditions are considered. In this section, the truth tables for these elements are

reviewed to show that an alternative word statement may be derived when the logic 0 input

conditions are considered, and that alternative symbols may be used to represent the alternative

word statements. The alternative word statements and logic symbols are used in some applications,

because they show more clearly the relationship between a gate and the elements around it.

It should be noted that alternative symbols are not always used in logic diagrams to represent

alternative functions. Some manufacturers use the normal symbols to represent elements performing

alternative functions, and leave it to the person reading the circuit to apply their knowledge of

truth tables to establish the alternative functions of the elements.

AND GATE. Table 22 is the truth table for an AND gate.

Inputs

A B

Output

C

0 0 0

0 1 0

1 0 0

1 1 1

TABLE 22. AND GATE TRUTH TABLE.

The word statements below are derived by examining the AND gate truth table. The normal word

statement describes the input requirements to produce a logic 1 on the output; the alternative

word statement describes the input requirements to produce a logic 0 on the output. When the

circuit connected to the output of the gate is activated by a logic 0, the alternative word

statement applies.

 NORMAL WORD STATEMENT ALTERNATIVE WORD STATEMENT

 C is logic 1 when C is logic 0 when

 A is logic 1 A is logic 0

 AND OR

 B is logic 1 B is logic 0

Note that the normal word statement shows that an AND gate performs the AND function when logic 1

voltage levels are considered, but the alternative statement shows that an AND gate performs the

OR function when logic 0 voltage levels are considered. Since it is usual for logic 1 to have

the greater significance, the gate derives its name (AND) from the function it performs when

considering the logic 1 conditions. Nevertheless it does perform the function:- ″C is logic 0

when A is logic 0 OR B is logic 0.″

The symbol shown in Fig. 35b is an alternative symbol which may be used in logic diagrams to

represent an AND gate which performs the OR function with logic 0 voltage levels. The shape of

the symbol indicates the OR function and the state indicators on the inputs and outputs show that

this function is performed when logic 0 voltage levels are considered. The normal symbol (Fig.

35a) indicates the AND function, and the absence of state indicators shows that the function is

performed when logic 1’s are considered.

(a) NORMAL SYMBOL – shows operation

for logic 1 conditions. .

(b) ALTERNATIVE SYMBOL – shows operation

for logic 0 conditions. .

FIG. 35. AND GATE – NORMAL AND ALTERNATIVE SYMBOLS.

13.1

13.2

ELECTRONIC LOGIC PRINCIPLES 1

 21

OR GATE. Table 23 is the truth table for an OR gate.

Inputs

A B

Output

C

0 0 0

0 1 1

1 0 1

1 1 1

TABLE 23. OR GATE TRUTH TABLE.

 NORMAL WORD STATEMENT ALTERNATIVE WORD STATEMENT

 C is logic 1 when C is logic 0 when

 A is logic 1 A is logic 0

 OR AND

 B is logic 1 B is logic 0

The normal word statement shows that an OR gate performs the OR function when logic 1 voltage

levels are considered, while the alternative statement shows that the same gate performs the AND

function when logic 0 voltage levels are considered. It is called an OR gate because the logic 1

condition is generally more significant; however, it does perform the function ″C is logic 0

when A is logic 0 AND B is logic 0.″

The symbol in Fig. 36b is an alternative symbol which may be used in logic diagrams to represent

an OR gate when the logic 0 conditions show the overall operation of a logic circuit more

clearly. The shape of the symbol indicates the AND function and the state indicators show that

this function is performed when the logic 0 voltage levels are considered. The shape of the

normal symbol (Fig. 36a) indicates the OR function, and the absence of state indicators shows

that the function is performed when logic 1’s are considered.

(a) NORMAL SYMBOL – shows operation

for logic 1 conditions. .

(b) ALTERNATIVE SYMBOL – shows operation

for logic 0 conditions. .

FIG. 36. OR GATE – NORMAL AND ALTERNATIVE SYMBOLS.

INVERTER. Table 24 is the truth table for an inverter.

Input

A

Output

Ā

0 1

1 0

TABLE 24. INVERTER TRUTH TABLE.

The word statements derived from an inverter truth table are shown below.

 NORMAL WORD STATEMENT ALTERNATIVE WORD STATEMENT

 Ā is logic 0 when Ā is logic 1 when

 A is logic 1 A is logic 0

13.3

13.4

ELECTRONIC LOGIC PRINCIPLES 1

 22

A choice is made between inverter symbols in Fig. 37 to represent inverters in logic diagrams.

(a) NORMAL SYMBOL – shows operation

for logic 0 output. .

(b) ALTERNATIVE SYMBOL – shows operation

for logic 1 output. .

FIG. 37. INVERTER – NORMAL AND ALTERNATIVE SYMBOLS.

NAND GATE. Table 25 is the truth table for a NAND gate.

Inputs

A B

Output

C

0 0 1

0 1 1

1 0 1

1 1 0

TABLE 25. NAND GATE TRUTH TABLE.

The word statements below are derived by examining the NAND gate truth table.

 NORMAL WORD STATEMENT ALTERNATIVE WORD STATEMENT

 C is logic 0 when C is logic 1 when

 A is logic 1 A is logic 0

 AND OR

 B is logic 1 B is logic 0

The normal word statement shows that a NAND gate performs the AND function when logic 1 voltage

levels are connected to its input, and the resultant output voltage is logic 0. This operating

condition is shown by the normal NAND gate symbol in Fig. 38a. The inputs have no state

indicators and this shows that the AND function is performed when the inputs are at the logic 1

voltage level. The state indicator on the output shows that a logic 0 voltage level is produced

when the AND function is performed.

(a) NORMAL SYMBOL – shows operation

for logic 0 output. .

(b) ALTERNATIVE SYMBOL – shows operation

for logic 1 output. .

FIG. 38. NAND GATE – NORMAL AND ALTERNATIVE SYMBOLS.

The alternative word statement shows that a NAND gate performs the OR function when logic 0

voltage levels are considered on the inputs, and the resultant output voltage is logic 1. This

operating condition is shown by the symbol in Fig. 38b. The shape of the symbol indicates that

the OR function is performed, and the state indicators show that logic 0 voltage levels are

required on the inputs to perform this function. The absence of a state indicator on the output

shows that a logic 1 voltage level is developed on the output when one input is at logic 0.

13.5

ELECTRONIC LOGIC PRINCIPLES 1

 23

NOR GATE. The truth table for a NOR gate is shown in Table 26.

Inputs

A B

Output

C

0 0 1

0 1 0

1 0 0

1 1 0

TABLE 26. NOR GATE TRUTH TABLE.

 NORMAL WORD STATEMENT ALTERNATIVE WORD STATEMENT

 C is logic 0 when C is logic 1 when

 A is logic 1 A is logic 0

 OR AND

 B is logic 1 B is logic 0

The normal word statement shows a NOR gate performs the OR function to produce a logic 0 on its

output. This operating condition is shown by the normal NOR gate symbol in Fig. 39a.

(a) NORMAL SYMBOL – shows operation

for logic 0 output. .

(b) ALTERNATIVE SYMBOL – shows operation

for logic 1 output. .

FIG. 39. NOR GATE – NORMAL AND ALTERNATIVE SYMBOLS.

The alternative word statement shows that a NOR gate requires logic 0 input conditions to perform

the AND function and produce a logic 1 on its output. This operating condition is shown by the

alternative NOR gate symbol in Fig. 39b. The symbol shape indicates the AND function, the state

indicators on the inputs show that this function is performed when the inputs are at logic 0, and

the absence of a state indicator on the output shows that the AND condition is satisfied when

the output is at logic 1.

SPECIAL GATES. Sometimes special logic circuits are encountered which cannot be classified

as AND, OR, NAND or NOR gates. They are represented in logic diagrams by using the AND or

OR shape symbols, which show the function performed, and state indicators to show whether logic 1’s

or logic 0’s are required on the inputs and outputs to perform the function indicated. Table 27

is the truth table for one of these special gates, and Fig. 40 shows the logic symbols.

Inputs

A B

Output

C

0 0 0

0 1 0

1 0 1

1 1 0

TABLE 27. SPECIAL GATE TRUTH TABLE.

13.6

13.7

ELECTRONIC LOGIC PRINCIPLES 1

 24

The following word statements are derived from Table 27 and explain the input conditions required

to make the output logic 1 and logic 0 respectively.

 NORMAL WORD STATEMENT ALTERNATIVE WORD STATEMENT

 C is logic 1 when C is logic 0 when

 A is logic 1 A is logic 0

 AND OR

 B is logic 0 B is logic 1

The logic symbols shown in Fig. 40 are developed from these statements.

(a) NORMAL SYMBOL – shows operation

for logic 1 output. .

(b) ALTERNATIVE SYMBOL – shows operation

for logic 0 output. .

FIG. 40. SPECIAL GATE SYMBOLS.

When the gate is used to perform the function represented by the symbol in Fig. 40a it is called

an ″Inhibit Gate″, because a logic 1 on input B (the inhibiting input) prevents (or ″inhibits″)

the output from becoming logic 1.

GATE COMBINATIONS. The operation of any gate combination can be expressed by two word

statements. For example the operation of the circuit in Fig. 41a is explained by either of

the two word statements below.

 NORMAL WORD STATEMENT ALTERNATIVE WORD STATEMENT

 F is logic 1 when F is logic 0 when

 A, AND B AND C are logic 1 A, OR B OR C is logic 0

 ORD AND

 when D AND E are logic 1 when D OR E is logic 0

(a) NORMAL SYMBOL – shows operation

for logic 1 output. .

(b) ALTERNATIVE SYMBOL – shows operation

for logic 0 output. .

FIG. 41. GATE COMBINATION.

When the circuit connected to the output of Fig. 41a is activated by a logic 0, the second word

statement is more useful. Also, the use of the alternative symbols for the AND and OR gates, as

shown in Fig. 41b, helps to show more clearly the input conditions required to produce a logic 0

at the output.

Question 8 on page 39 is an exercise in reading logic diagrams which use the alternative logic

symbols.

13.8

ELECTRONIC LOGIC PRINCIPLES 1

 25

14. INTRODUCTION TO BOOLEAN MANIPULATION TECHNIQUES.

COMPLEX LOGIC CIRCUITS. Logic circuits often contain more elements than would appear

necessary to perform the required logic function. For example, Fig. 21 shows how three NAND

gates are used to perform the OR function. In this example, a Boolean expression is

developed which describes the actual NAND gate combination used, and the equivalence of to to
A+B was proven with truth tables.

In practice, however, the Boolean expression describing the actual gate combination in a complex

circuit may not readily indicate the basic function of the circuit, and the basic function may

not be known. For example, consider the circuit shown in Fig. 42. The Boolean expression
developed at the output of this circuit describes the actual circuit used, but the input

conditions required to make the output significant are not immediately obvious. The operation of

this complex circuit can be more readily understood if the basic function of the circuit is

available.

FIG. 42. CIRCUIT OF .

BASIC FUNCTION OF COMPLEX LOGIC CIRCUIT. One method of obtaining the basic function of a

complex Boolean expression is to apply known Boolean identities and laws to simplify the

expression. For example, the application of Boolean identities and laws to enables it to
be simplified to Ā.(B + C). This expression reveals that a significant (logic 1) output is

obtained in Fig. 42 when Ā is logic 1 AND when either B OR C is logic 1. Note that Ā is logic 1

when A is logic 0.

FUNCTIONAL LOGIC DIAGRAM. A functional logic diagram can be drawn to represent a simplified

Boolean expression. A functional logic diagram is a simplified diagram having the same

truth table as the actual logic circuit from which it was derived. For example, Fig. 43 is a

functional logic diagram of Fig. 42 as it represents the Boolean expression Ā.(B + C), which is

the simplified expression of .

FIG. 43. FUNCTIOAL LOGIC DIAGRAM OF FIG> 42.

It should be realised that some logic circuits may already be in their simplest form. In these

cases the function of the circuit is obtained directly from the Boolean expression describing

the circuit.

14.1

14.2

14.3

ELECTRONIC LOGIC PRINCIPLES 1

 26

BOOLEAN IDENTITIES. In this section of the paper it is intended to introduce some of the

basic identities commonly used in converting complex Boolean expressions to their simplest

function. A Boolean identity equates two expressions which are equal for all possible combinations

of their variables. The equivalence of the two expressions in a Boolean identity can always be

proven with the aid of truth tables.

AND FUNCTION IDENTITIES. Consider a two input AND gate with one input permanently tied to

logic 1 as shown in Fig. 44.

FIG. 44.

The identity derived from this expression is:-

A.1 = A (1)

This means that the output of the gate is always dependent on the logic condition at input A. This

can be proven as follows. The variable A has two states, logic 1 and logic 0. Substituting

these in the identity A.1 = A we get:-

1.1 = 1, when A is logic 1, and

0.1 = 0, when A is logic 0. .

This identity is true because the output is equal to A for both states.

Now consider an AND gate with one input permanently at

logic 0, as shown in Fig. 45. The output is always at

logic 0 regardless of the condition of A. The identity

derived from this circuit is:-

A.0 = 0 (2)

When both inputs of an AND gate have the same signal

applied, as shown in Fig. 46, the identity applying

to the circuit is:-

A.A = A (3)

When A is logic 1 the output is logic 1, and when

A is logic 0 the output is logic 0, thus the output

is always equal to the condition of A.

Fig. 47 shows a signal Ā, and its complement A

applied to an AND gate. Since it is impossible for

both A and Ā to be at logic 1 at the same time, the

output of the gate must always be at logic 0.

Therefore, the following identity applies.

A.Ā = 0 (4)

OR FUNCTION IDENTITIES. Consider an OR gate with

one input permanently tied to logic 1, as shown

in Fig. 48. An OR gate requires logic 1 at one input

only to obtain a logic 1 output, therefore, the

following identity applies:-

A + 1 = 1 (5)

Fig. 45.

Fig. 46.

Fig. 47.

Fig. 48

14.4

14.5

14.6

ELECTRONIC LOGIC PRINCIPLES 1

 27

The condition of the OR gate output in Fig. 49 depends

on the logic condition of input A, because the other

input is permanently tied to logic 0. If A is at

logic 1 the output is at logic 1, and if A is at

logic 0 the output is at logic 0, therefore the

following identity applies.

A + 0 = A (6)

The OR gate in Fig. 50 has the same signal applied to

both inputs. Therefore, when A is logic 1 the output

is logic 1, and when A is logic 0 the output is logic

0. Thus the output is equal to the logic condition of

A, and the following identity applies:-

A + A = A (7)

Fig. 51 shows an OR gate with signal A applied to one

input, and its complement Ā applied to the other

input. Since one of these signals must always be at

logic 1, the output of the gate must always be at

logic 1. Therefore, the following identity applies:-

A + Ā = 1 (8)

Fig. 49.

Fig. 50.

Fig. 51.

APPLICATION OF AND AND OR IDENTITIES. The following is a summary of identities applying to

the AND and OR functions.

 AND OR

 A.1 = A (1) A + 1 = 1 (5)

 A.0 = 0 (2) A + 0 = A (6)

 A.A = A (3) A + A = A (7)

 A.Ā = 0 (4) A + Ā = 1 (8)

Some examples of the application of these identities are as follows:-

Example 1. Simplify A.1 + A.A + B.

Substitute A for A.1 (identity 1).

 = A + A.A + B.

Substitute A for A.A (identity 3).

 = A + A + B.

Substitute A for A + A (identity 7).

 = A + B (answer).

Example 2. Simplify (B + 0).(B + 1).C.

Substitute B for B + 0 (identity 6) and

 1 for B + 1 (identity 5).

 = B.1.C

Substitute B for B.1 (identity 1).

 = B.C (answer).

Further examples of simplifying expression with AND and OR identities are contained in Question

9 on page 39.

14.7

ELECTRONIC LOGIC PRINCIPLES 1

 28

COMMUTATIVE LAW. This law states that the inputs to a logic gate may be listed in any order

without affecting the logical operation. For example, consider the three input AND gates in

figs. 52a and 52b. Since both these gates have the same signals applied, they perform the same

logical operation. Therefore it is true to say that:-

A.B.C = C.B.A (9)

 (a) (b)

FIG. 52. COMMUTATIVE LAW APPLIED TO AND FUNCTION.

The commutative law also applies to ORed variables, as shown in Fig. 53. The logic function

remains the same regardless of the order in which the input variables are listed. This can be

expressed in the following identity.

A + B + C = C + B + A (10)

 (a) (b)

FIG. 53. COMMUTATIVE LAW APPLIED TO OR FUNCTION.

ASSOCIATIVE LAW. This law states that ANDed variables or ORed variables can be grouped

together in any order in a Boolean expression. This can be expressed in logical form for

three ANDed variables as follows:-

A.(B.C) = (A.B).C = A.B.C (11)

Each of the expressions has a different logic circuit, as shown in Fig. 54. However the basic

logic function of Figs. 54a and 54b is exactly the same as Fig. 54c.

 (a) (b) (c)

FIG. 54. ASSOCIATIVE LAW APPLIED TO AND FUNCTION.

The associative law can be applied to ORed variables as follows:-

A + (B + C) = (A + B) + C = A + B + C (12)

The logic diagrams representing each of the expressions in identity 12 are shown in Fig. 55.

Each of these circuits has exactly the same basic function which is A + B + C, as shown in

Fig. 55c.

14.8

14.9

ELECTRONIC LOGIC PRINCIPLES 1

 29

 (a) (b) (c)

FIG. 55. ASSOCIATIVE LAW APPLIED TO OR FUNCTION.

DISTRIBUTIVE LAW. The distributive law is expressed as follows:-

A.B + A.C = A.(B + C) (13)

Figs. 56a and 56b show the logic circuits used to represent each expression in the identity.

Although each circuit is different, they both have the same function. The distributive law shows

that normal algebraic factorising techniques can be applied to a Boolean expression.

 (a) (b)

FIG. 56. DISTRIBUTIVE LAW.

The following are further examples of simplification using some of the previously stated

identities.

Example 1. Simplify A.(A + B)

Substitute A.A + A.B for A.(A + B) (identity 13).

= A.A + A + B

Substitute A. for A.A (identity 3).

= A + A.B

Factorise the expression (identity 13).

= A.(1 + B)

Substitute 1 for (1 + B) (identity 5).

= A.1

Substitute A for A.1 (identity 1).

= A (answer).

Example 2. Simplify Ā +

Factorise the expression (identity 13).

= .

Substitute 1 for (identity 8).

= Ā.1

Substitute Ā for Ā.1 (identity 1).

= Ā (answer).

Question 10 on page 39 contains further examples on Boolean simplification.

14.10

14.11

ELECTRONIC LOGIC PRINCIPLES 1

 30

De MORGAN′S LAWS. Generally, the basic function of a logic circuit can not be readily

interpreted from a negated expression situated at an intermediate point, or at an output.

For example, the basic function of the negated expression is not immediately obvious.

De Morgan′s theorem, which is usually expressed in terms of two laws, provides a method by which

a complex negated expression can be replaced by an alternative simplified expression. De Morgan′s

theorem implies that when an expression is negated, it can be replaced by another expression in

which each variable is negated, each AND is changed to OR, and each OR is changed to AND. The two

laws derived from this theorem are as follows:-

 = + (14)

 = (15)

De Morgan′s Laws are frequently used identities in Boolean manipulation.

The validity of the first of De Morgan′s laws (= +) can be shown with the aid of a two
input NAND gate (Fig. 57) and truth tables. The normal expression on the output of this gate is

 , but this expression does not readily reveal the input conditions required to make the output

significant. However, and equivalent expression for can be obtained by applying De Morgan′s
theorem as follows: A is changed to Ā, is changed to , and the AND is changed to an OR. The

new expression on the output of the NAND gate becomes + , which indicates that the output is
significant when Ā is logic 1 OR is logic 1, that is, when A is logic 0 OR B is logic 0. The

equivalence of the two expressions and + is proven in truth tables 28 and 29.

FIG. 57.

A B A.B A B +

0 0 0 1 0 0 1 1 1

0 1 0 1 0 1 1 0 1

1 0 0 1 1 0 0 1 1

1 1 1 0 1 1 0 0 0

 Table 28. TRUTH TABLE FOR . TABLE 29. TRUTH TABLE + .

The validity of the second of De Morgan′s Laws (=) can be shown with the aid of a NOR
gate (Fig. 58) and truth tables. The input conditions required to make the output significant are

not obvious from the output expression . Another expression can be obtained for by
applying De Morgan′s theorem as follows: A is inverted to Ā, B is inverted to , and the OR is

changed to an AND. The new expression on the output of the gate becomes , which indicates that

the output is significant when is logic 1 AND is logic 1, that is, when A is logic 0 and B is

logic 0, The equivalence of and is shown in truth tables 30 and 31.

FIG. 57.

A B A + B A B .

0 0 0 1 0 0 1 1 1

0 1 1 0 0 1 1 0 0

1 0 1 0 1 0 0 1 0

1 1 1 0 1 1 0 0 0

 Table 30. TRUTH TABLE FOR . TABLE 31. TRUTH TABLE .

It should be realised that De Morgan′s Laws (identities 14 and 15) can be written as follows,

without altering their meaning.

 = (identity 14)

 = (identity 15)

14.12

ELECTRONIC LOGIC PRINCIPLES 1

 31

Some examples of the applications of De Morgan′s Laws are as follows.

Example 1. Simplify .

Applying identity 15 (=)

= . (answer).

When applying De Morgan′s Laws to complex expressions, it is essential that parts of the

expressions which are bracketed, or would normally be considered as being bracketed, are

considered as complete units until all ″De Morganising″ has been completed, then the units can be

simplified. This is demonstrated in example 2.

Example 2. Simplify .

Since an AND function takes precedence over an OR function in a Boolean expression, A.B and C.D

are considered as two separate units for the application of De Morgan′s Laws, as follows:-

Let x = A.B and,

 y = C.D.

Substitute x and y into the expression

 =

Apply identity 15 (=) by substituting x for A, and y for B.

 =

Re-substitute A.B for x and C.D for y

 = .

Substitute + for ; and + for (identity 14)

 = (+).(+) (Answer).

Generally, the procedure shown in example 2 can be simplified by mentally recognising the units

in an expression, and then applying De Morgan′s Laws direct to the expression, and shown in

examples 3 and 4.

Example 3. Simplify .

As (C + D) and (E + F) are bracketed, they are considered as complete units.

Apply identity 14 (= +) by substituting (C + D) for A, and (E + F) for B.

= + . Substitute for ; and for (identity 15)

= + (Answer)

Example 4. Simplify

(A + B + C) and (D) are considered as separate units.

Apply identity 14 (= +) by substituting (A + B + C) for A and (D) for B.

= +

Substitute for (identity 14)

= + (Answer)

Sometimes further simplification can be applied after De Morgan′s Laws have been used on an

expression, as shown in example 5.

Example 5. Simplify

In this case and are considered as complete units.

Apply identity 14 (= +) by substituting for A, and for B

= +

= A.B + A.C

Simplify this by applying identity 13.

= A.(B + C) (Answer).

Further examples on De Morgan′s Laws are contained in Question 11 on page 40.

14.13

ELECTRONIC LOGIC PRINCIPLES 1

 32

15. LOGIC SYMBOLS.

A variety of logic symbols are used in the documentation provided with logic equipment

supplied to the department. Some of these symbols are shown below. The figures shown in

some of the symbols indicate the number of inputs which must be at logic 1 to activate the gate.

AND GATE SYMBOLS.

OR GATE SYMBOLS.

INVERTER SYMBOLS.

NAND GATE SYMBOLS.

NOR GATE SYMBOLS.

FIG. 59. LOGIC SYMBOLS.

15.1

ELECTRONIC LOGIC PRINCIPLES 1

 33

16. TEST QUESTIONS.

Determine whether the outputs of the circuits in Fig. 60 are logic 1 or logic 0. (ANS on

page 40).

(a)

(b)

(c)

(d)

(e)

FIG. 60.

Determine whether the outputs of the circuits in Fig. 61 are logic 1 or logic 0. (ANS on

page 40).

(a)

FIG. 61.

Q.1

Q.2

ELECTRONIC LOGIC PRINCIPLES 1

 34

(contd.)

(b)

(c)

(b)

FIG. 61. (contd.)

Determine whether the outputs of the circuits in Fig. 62 are logic 1 or logic 0. What

relationship exists between A and ? (ANS on page 40).

 (a) (b)

 (a) (b)

FIG. 62.

(a) Draw the logic diagram described by the following expressions.

 (ANS on page 40).

 (i) A.B + C

 (ii) A.C + A.B

(iii) +

Q.2

Q.3

Q.4

ELECTRONIC LOGIC PRINCIPLES 1

 35

(b) Write Boolean expressions which describe the logic circuits shown in Fig. 63

 (ANS on page 41).

 (i)

 (ii)

(iii)

 (iv)

 (v)

FIG. 63.

Q.4

ELECTRONIC LOGIC PRINCIPLES 1

 36

(c) Referring to Fig. 64 cross pout the incorrect answers in the following statements for

the output condition on D. (ANS on page 42).

 logic 0

 (i) If A = logic 0, D = depends on other inputs

 logic 1

 Logic 0

 (ii) If B = logic 0, D = depends on other inputs

 logic 1

 Logic 0

(iii) If C = logic 0, D = depends on other inputs

 logic 1

FIG. 64.

(d) Referring to Fig. 65 cross pout the incorrect answers in the following statements for

the output condition on F. (ANS on page 42).

 logic 0

 (i) If B = logic 0, F = depends on other inputs

 logic 1

 logic 0

 (ii) If C = logic 0, F = depends on other inputs

 logic 1

 logic 0

(iii) If A,B and C are F = depends on other inputs

 all logic 1 logic 1

 logic 0

 (iv) If D = logic 1, and F = depends on other inputs

 E = logic 1 logic 1

FIG. 65.

Q.4

Q.4

ELECTRONIC LOGIC PRINCIPLES 1

 37

Construct a truth table for the circuit in Fig. 63 (ii). (ANS on page 42).

Determine the logic condition on the outputs of the circuits in Fig. 66. Show the logic

condition of the intermediate pints in each circuit. (ANS on page 42).

(a).

(b).

(c).

(d).

FIG. 66.

Q.5

Q.6

ELECTRONIC LOGIC PRINCIPLES 1

 38

(a) What function is performed by the switch contacts in Fig. 67? (ANS on page 43).

 (a) (b)

FIG. 67.

(b) What function is performed by the logic circuit in Fig. 68? (A Truth Table should

be used as an aid to determine the function).

FIG. 68.

(c) What functions are performed by the logic circuits in Fig. 69? (Truth Tables should be

used as an aid to determine the functions).

(i).

(ii).

FIG. 69.

Q.7

ELECTRONIC LOGIC PRINCIPLES 1

 39

Determine the logic condition at the output of the circuits in Fig. 70. Show the logic

condition of the intermediate points in each circuit. (ANS on page 43).

(a).

(b).

(c).

FIG. 70.

Simplify the following expressions (ANS on page 44).

(a) A.B.Ā + C.B.C

(b) A + B + Ā + B

(c) B.(C + 1).C.B

Simplify the following expressions (ANS on page 44).

(a)

(b)

(c) Ā Ā .

Q.8

Q.9

Q.10

ELECTRONIC LOGIC PRINCIPLES 1

 40

Simplify the following expressions (ANS on page 44).

(a)

(b)

(c)

17. ANSWERS TO TEST QUESTIONS

ANS.1 (a) D = 0 (b) D = 0 (c) D = 1

 (d) G = 0 (The output of G2 is logic 0, therefore one of the inputs to G3 is logic 0.

 All the inputs of G3 would have to be at logic 1 to obtain a logic 1 output).

 (c) J = 1

ANS.2 (a) C = 1 (b) C = 0 (c) D = 1

 (b) H = 1 (The output of G1 is logic 1, therefore, one of the inputs of G3 is logic 1.

 G3 only needs one of its inputs at logic 1 to produce a logic 1 output).

ANS.3 (a) = 0 (b) = 0

 (c) Ā = 1, = 0, = A has been inverted twice and a double inversion
 restores an expression back to its original form.

 (d) Ā = 0, = 1

ANS.4 (a) (i) The expression A.B + C means that A and B are ANDed together and the output

 (A.B) of the AND gate is ORed with C.

 (ii) The expression A.C + A.B means that A and B are ANDed together, A and C are ANDed

 together, and the outputs of both AND gates A.C and A.B are ORed together.

Q.11

ELECTRONIC LOGIC PRINCIPLES 1

 41

ANS.4 (a) (iii)

ANS.4 (b) Each of the figures in Q4(b) has been reproduced to show how the final expression is

 solved by progressively considering the intermediate points.

 (i)

 (ii)

(iii)

 (iv)

 (v)

ELECTRONIC LOGIC PRINCIPLES 1

 42

ANS.4 (c) Referring to Fig. 64.

 (i) If A = 0, D = 1

 (ii) If B = 0, D = 1

(iii) If C = 0, D depends on other inputs.

ANS.4 (d) Referring to Fig. 65.

 (i) If B = 0, F = 0

 (ii) If C = 0, F depends on other inputs.

(iii) If A, B and C are all 1, F = 1.

 (iV) If D = 1, and E = 1, F depends on other inputs.

ANS.5

Inputs

A B C

Intermediate Points Outputs

0 0 0 1 0 0

0 0 1 1 0 1

0 1 0 0 0 0

0 1 1 0 0 1

1 0 0 1 1 1

1 0 1 1 1 1

1 1 0 0 0 0

1 1 1 0 0 1

ANS.6 (a)

 (b)

ELECTRONIC LOGIC PRINCIPLES 1

 43

ANS.6 (contd.)

 (c)

 (d)

ANS.7 (a) The contacts in Fig. 67 (i) perform the comparator function, and those in Fig. 67 (ii)

 the Exclusive-OR function.

 (b) The circuit in Fig. 68 performs the Exclusive-OR function.

 (c) The circuit in Fig. 69 (i) performs the comparator function. The circuit in Fig. 69

 (ii) performs the Exclusive-OR function.

ANS.8 (a)

 (b)

 (c)

ELECTRONIC LOGIC PRINCIPLES 1

 44

ANS.9 (a) A.B.Ā + C.B.C (Substitute A.Ā = 0; C.C = C)

 = B.0 + B.C (″ (B.0 = 0)

 = 0 + B.C (″ (0 + B.C = B.C)

 = B.C

 (b) A + B + Ā + B (″ (A + Ā = 1; B + B = B)

 = 1 + B (″ (B + 1 = 1)

 = 1

 (c) B.(C + 1).C.B (″ (C + 1 = 1)

 = B.1.C.B (″ (B.B = B; C.1 = c)

 = B.C

ANS.10 (a) (″ ()

 = B.(A + 1) (″ (A + 1 = 1)

 = B.1 (″ (B.1 = B)

 = B

 (b)) (″ ()

 = A.B.1 (″ (B.1 = B)

 = A.B

 (c) A.Ā +A.B + Ā.B + B.B + C.A (″ (A.Ā = 0; B.B = b)

 = 0 + A.B + Ā.B + B + C.A

 = B.(A + Ā + 1) + C.A (″ (A + Ā = 1)

 = B(.(1 + 1) + C.A .. (″ (1 + 1 = 1)

 = B + C.A

ANS.11 (a)

 Apply identity 15.

 =

 = A.B (Answer)

 (b)

 Apply identity 14.

 =

 = A + B + C + D (Answer)

 (c)

 Apply identity 14 () by substituting () for A, ()

 for B and () for C.

 =

 Apply identity 15 to each unit.

 =

 = A.B + A.C + A.D

 Apply identity 13.

 = A(B + C + D) (Answer).

ELECTRONIC LOGIC PRINCIPLES 1

 45

 46

