

COURSE OF TECHNICAL INSTRUCTION LABORATORY PROJECTS

TECHNICIANS-IN-TRAINING SECOND YEAR

LABORATORY PROJECTS - SECOND YEAR

ISSUED 1961
 (AMENDED 1964)

Contents:-
91. The Sine Wave.

10 2. Resistance in an A.C. Circuit.
9 3. Capacitance in an A.C. Circuit.
Q 4. Effect of Frequency on Capacitive Reactance.
10 5. Inductance in an A.C. Circuit.
106 . Effect of Frequency on Inductive Reactance.
107. Capacitance and Resistance in Series.

108 . Inductance and Resistance in Series.
10 9. Inductance, Capacitance and Resistance in Series (1).
10. Inductance, Capacitance and Resistance in Series (2).
1011. Inductance, Capacitance and Resistance in Series (3).
1012. Effect of Frequency in L, C and R Series Circuits.
1013. Effect of Frequency on $E_{R}, E_{I_{r}}$ and E_{C} in a Series A.C. Circuit.
14. Series Kesonance.
$8 \frac{1}{2}$ 15. Capacitance and Resistance in Parallel.
16. Inductance and Resistance in Parallel.
1017. L, C and R in parallel (1).
1018. L, C and R in parallel (2).
919. Effect of Frequency in L and C Parallel Circuits.
20. Parallel Resonance.

5 21. Metal Rectifiers.
7 22. Rectification.
23. Effects of Filters.
24. Types of Filters.
25. Valve Constants (1).
26. Valve Constants (2).

8 $\frac{1}{2} 27$. Need for Grid Bias.
7 28. Practical Triode Voltage Amplifier with Cathode Resistor Bias.
6 29. Oscillator (L/C).
9 30. Pentode Electron Tube (1).
31. Pentode Electron Tube (2).

6 32. Practical Pentode Voltage Amplifier.

10 33. Voltage Doubler.
8. 34. Germanium Diode.
35. Zener Diode.
36. Thermister - directly heated.
37. Thermister - indirectly heated.
38. Varistor.
39. Transistor - Common Base.
40. Transistor - Voltage Amplifier Common Base.
41. Transistor - Common Emitter (1).
42. Transistor - Common Emitter (2).
43. Transistor - Common Emitter (3).

10 44. Transistor - Common Emitter (4).
45. Transistor Amplifier - Common Emitter.
46. Oscillator - Transistor Tuned Base.
47. Oscillater - Transistor Tuned Collector.
48. Oscillator - Transistor Phase Shift.
49. Switching Transistors (1).
50. Switching Transistors (2).
51. Transformer - Turns Ratio.
52. Transformer - Resistive Load.
53. Transformer - Reflected Impedance.
54. Transformer - Impedance Matching.
55. Ammeters.
56. Voltmeters.
57. A.C. Meters.
58. Vacuum Tube Voltmeter.
659. Oscilloscope - Familiarization.

660 . Oscilloscope.
661. Oscilloscope - Viewing Waveform.
1062. Oscilloscope - Frequency Measurement.
63. Oscilloscope - Voltage Measurement.
64. Frequency Measurement (B.F. Method).

9 65. Voltage Regulation - saturable choke.

THE SINE WAVE.

The term "SINE WAVE" is used to express the shape of a wave form of e.m.f. generated when a conductor is rotated at a constant speed in a uniform magnetic field. As the sire wave is the basis of all alternating current work, it is necessary to fully understand its generation, and the relationship between values.

AIM: To construct a sine wave and to study various alternating current values.
NOTE: All calculations corrected to 2 decimal places.
METHOD: Theoretical circuit used as in Fig. 1.

FIG. 1.
STEP 1. Using Ohms Law calculate the maximum value of current in the circuit. Record in Table 1.

STEP 2. Using the sine tables calculate the instantaneous value of current each $1 / 24$ th of a second, that is, each 15°.
$I_{\text {inst. }}=$ Max. Value X Sine θ.
STEP 3. From your results in Step 2 plot a graph of current through the load resistor against time for one cycle on Graph 1.

STEP 4. (i) Calculate the average value of current, given that:-
3.19 amps Average Value $=0.637$ of Max. Value.

(ii) Calculate the effective or R.M.S. value of current given that:3.54A. Effective or R.M.S. Value $=.707$ of Max. Value

(Mark R.M.S. Value on graph.)
STEP 5. From your results in Step 4 calculate the following relationships -
I effective ... $/ . /!$!... times the Average Value. Average Value .. $\frac{1}{. l l}$.. of $I_{R . M . S . ~ o r ~ e f f e c t i v e . ~}^{\text {R. }}$

$E_{\text {max }} 10$. VOLTS	$I_{\max } . .5 .$. AMPS	$R \ldots . . .2$ OHMS

TABLE 1.

PROJECT NO. I

and Year

θ	SIN θ	I INST.	θ	SIN θ	I INST.	θ	SIN θ	I INST.	θ	SIN θ	INST.
15	-2588	$1-29$	105	9659	4.83	195	-2588	1.29	285	.9659	4.83
30	-5	2.50	120	-8860	433	210	5	2.50	300	.8860	4.33
45	-1071	3.54	135	-7071	3.54	225	.7071	3.54	315	-7071	3.54
60	8860	4.33	150	-5	2.50	240	.8860	4.33	330	-5	2.50
75	9659	4.83	165	-2588	1.29	255	-9659	4.83	345	.2588	1.29
90	1	5	180	0	0	270	1	5	360	0	0

TEST QUESTIONS:

1. A conductor is rotated at a constant speed in a uniform magnetic field, and, has a maximum e.m.f. of 30 volts induced across it. What are the values of the instantaneous voltages and their polarities at the following instants?
(1) $60^{\circ} \ldots$
t..... 25...98
vo..fis..........
(ii) $210^{\circ} \ldots$......15...................
2. Define the tori "Effective" or ${ }^{\text {RR. H. S. }}$ " value of alternating current ..L\}...T.HAT...VALUE...................................

3. A transformer has a secondary voltage of 50 Volts: to which of the following values does this refer
(i) Instantaneous
(ii) Average
(iii) Effective or R.M.S.
(iv) Peat or Max
4. A capacitor is rated at 400 peak volts. Calculate the following values which can be applied without risk.
(1) A.C. Sine Have Voltage of volts. (ii) D.C. Voltage of $\ldots \ldots \ldots$..... volts.

RESISTANCE IN AN A.C. CIRCUIT.

In a resistive circuit, the current and voltage reach their maximum and minimum values at the same instant; they are said to be "in step" or "in phase".

In low frequency alternating current circuits, as in D.C. circuits- Ohms Law applies.
A.IM: To prove that in a resistive A.C. circuit -
(i) Ohms Law applies
(ii) Resistance value is unaffected by frequency variation (neglecting skin effect).

APPARATUS: Voltmeter 0-10V (Multimeter A.P.O. No.2) Milliammeter 0-10mA (Multimeter 1mA-10A), Resistors $2 \mathrm{k} \Omega$, $5 \mathrm{k} \Omega, 10 \mathrm{k} \Omega$, Oscillator (variable), and Connecting Leads.

MEPHOD:

STEP 1. Connect the circuit as shown in Fig. 1.

FIG. 1.

STEP 2. Adjust the supply voltage to read 5 Volts at $100 \mathrm{c} / \mathrm{s}$. Measure the circuit current. Record in Table 1.

STEP 3. Increase the supply voltage to 10 Volts. Measure the circuit current. Record in Table 1.

STEP 4. With supply voltage at 10 Volts connect the $5 \mathrm{k} \Omega$, and $10 \mathrm{k} \Omega$ resistors respectively. Measure the circuit currents. Record in Table 1.

STEP 5. Replace $100 \mathrm{c} / \mathrm{s}$ supply with $200 \mathrm{c} / \mathrm{s}$, connect the 10 k 8 resistor, adjust the supply voltage to read 10 Volts. Measure the circuit current. Record in Table 1.

STEP 6. Using Ohms Law calculate the resistance of the circuit for each step.

STEP 7. Compare the practical and theoretical values of resistance in Table 1.

2nd Year

RESISTANCE	FREQUENCY	VOLTS	CURRENT	$R=\frac{E}{I}$
2.000Ω	$100 \mathrm{c/s}$	5 VOLTS	2.5 mA	2000Ω
$2,000 \Omega$	11	10 VOLTS	5 mA	2000Ω
5.000Ω	11	10 VOLTS	2 mA	5000Ω
10.000Ω	11	10 VOLTS	1 mA	$10,000 \Omega$
10.000Ω	$200 \mathrm{c/s}$	10 VOLTS	1 mA	$10,000 \Omega$

TABLE 1.

IEST QUESTIONS:

1. In a resistive circuit
(i) When the supply voltage is doubled, the circuit current increases. \downarrow thene. same.
+nereves.
1 (ii) When the supply voltage is constant and the frequency doubled the current remains the same.
demeares.
 to the circuit resistance.

$$
\therefore \quad 1=-\frac{E}{R}
$$

i (iv) The current and voltage are said to be in phase and the phase angle is degrees.
1

CAPACITANCE IN AN A.C. CIRCUIT.

A capacitor is a device which stores energy in the form of a static charge. When an e.m.f. is applied, the charge causes a rise in P.D. across the plates and a resultant electric field between them.

When an alternating voltage is connected, the plates alternately charge and discharge. The opposition that a capacitor offers to alternating current in termed Capacitive Reactance $\left(X_{C}\right)$ and is found from the formula -

$$
X_{C}=\frac{1}{2 \pi f C}
$$

The value of current in this type of circuit can be found from the restatement of Ohms Law for capacitive circuits.

$$
I=\frac{E}{X_{C}}
$$

In a purely capacitive circuit the current leads the voltage by 90 degrees.
ATM: To prove that the principle of Ohms Law applies in a capacitive circuit.
OR 0-60
APPARATUS: Voltmeter 0-10V (Multimeter A.P.O. No.2), Milliammeter 0-10mA (Multimeter 1mA-10A). Oscillator $1000 \mathrm{c} / \mathrm{s}$, Capacitors $0.1 \mu \mathrm{~F}, 0.05 \mu \mathrm{~F}$, Switch and Connecting Leads.

METHOD:

STEP 1. Connect the circuit as shown in Fig. 1.

FIG. 1.

STEP 2. Adjust the supply voltage to read 5 Volts. Measure the circuit current. Record in Table. 1.

STEP 3. Increase the supply voltage to 10 Volts. Measure the circuit current. Record in Table 1.

STEP 4. Connect the $0.05 \mu \mathrm{~F}$ capacitor and repeat steps 2 and 3.
STEP 5. Using the formula $X_{C}=\frac{E}{I}$, calculate the capacitive reactance for each step. Record in Table 1.

STEP 6. Using the formula $X_{C}=\frac{1}{2 \pi f^{\prime} C}$, calculate the capacitive reactance for each step.
Record in Table 1.
STEP 7. Compare the results of steps 5 and 6.

Laboratory Projects
and Year

c	FREQ.	E	lImA	$x_{c}=\frac{I}{2 \pi f C}$	$x_{c}=\frac{E}{I}$
0.1	$1000 c / 5$	5	3	1592	1500
0.1	1	10	6	1592	1500
0.004	11	5	1.5	3387	3333
0.07	11	10	3	3387	3333

TABLE 1.

TEST QUESTIONS:

1. From your results:-
increases.
(i) When E is doubled the circuit current tees.
(1) (ii) When the capacitance is halved the capacitive reactance the same and the circuit current romains the same. decreases decreases.
2. In a capacitive circuit :-
(i) The circuit current (1) leads the supply voltage (E) by $\frac{\theta}{90}$ degrees.

3. When the capacitors of FIG. 1 are connected in parallel, the total capacitance increases and the capacitive reactance decreases.
(1)
4. When an alternating supply of 5 volts at a frequency of $800 \mathrm{c} / \mathrm{s}$ is applied to a capacitor, the circuit current is 50 mA . What is the value of the capacitor?

$$
\begin{aligned}
& C=\frac{1}{2 \pi \epsilon x} \quad x_{C}=1 \times E=100 \\
& c=\frac{199.592}{10^{4}} \times \frac{1}{200} \times \frac{1}{100}=\frac{1405}{750} 0 \\
& =1.99 \mu \mathrm{~F}
\end{aligned}
$$

EFFECT OF FREQUENCY ON CAPACITIVE REACTANCE.

Capacitive reactance is the opposition that a capacitor offers to alternating current and is found from the formula -

$$
X_{C}=\frac{1}{2 \pi f C}
$$

Capacitive reactance varies with - (i) frequency of supply

When stating values of capacitive reactance the frequency must be given. For example a $2 \mu \mathrm{~F}$ capacitor has an X_{C} of 1008 at $796 \mathrm{c} / \mathrm{s}$.

ATM: To prove that in a capacitive circuit the capacitive reactance varies with frequency.
APPARATUS: Voltmeter 0-10V (Multimeter A.P.O. No. $\mathrm{c}^{\text {) }}$), Milliammeter 0-10mA (Ammeter 1mA-10A), Oscillator Variable, Capacitor $0.1 \mu \mathrm{~F}$ and Connecting Leads.

METHOD:

STEP 1. Connect the circuit as shown in Fig. 1.

FIG. 1.

STEP 2. Ad just the frequency to $200 \mathrm{c} / \mathrm{s}$ with the supply voltage (E) at2 25 Volts. Measure the circuit current. Record in Table 1.

STEP 3. Maintain the supply voltage at2 2 Volts increase the frequency in 200 cycle steps to $1400 \mathrm{c} / \mathrm{s}$. Measure the circuit current for each step. Record in Table 1.

STEP 4. Using the formula $X_{C}=\frac{E}{\bar{I}}$, calculate the capacitive reactance for each step. Record in Table 1.

STEP 5. Using the formula $X_{C}=\frac{1}{2 \pi f C}$, calculate the capacitive reactance for each step. Record in Table 1.

STEP 6. Compare the results of steps, 4 and 5.

STEP 7. Plot a graph of capacitive reactance versus frequency on Graph 1.

Laboratory Projects

2nd Year

FREQ.	C	E	InA	$x_{c}=\frac{1}{2 \pi f C}$	$x_{c}=\frac{E}{I}$
200	0.1	25	3	$7,86$.	$8,333 \cdot 3$
400	$"$	$"$	6	3,980	$4,166 \cdot 6$
600	$"$	$"$	9	$2,653.3$	$2,666 \cdot 6$
800	$"$	$" 12$	12	1,990	$2,083 \cdot 3$
1000	$"$	$" 15$	15	1,592	$1,666.6$
1200	$"$	$"$	18	$1,326.6$	$1,388 \cdot 8$
1400	$"$	$"$	21	$1,137 \cdot 1$	$1,190.5$

TEST QUESTIONS:
ans the same.
decreases.
2. When the voltage and frequency are constant and another 0.1 F capacitor is, connected in series, the capacitive reactance ...IMFREASES..., and the current .D.ECRE.AS.ES...
3. From Graph 1, state the Capacitive reactance of (i) a 0.1 F capacitor at $750 \mathrm{c} / \mathrm{s} \ldots .2840$..... ohms.
(ii) a 0.5 F capacitor at $750 \mathrm{c} / \mathrm{s} \ldots . .4 .0 .8 . .$. ohms.
(iii) a 0.5 F capacitor at $1500 \mathrm{c} / \mathrm{s} \ldots 8 .!6 \ldots$ ohms. f

INDUCTANCE IN AN A.C. CIRCUIT.

An inductor is a device which stores energy in the form of a magnetic field.
Inductance is the property of a inductor to oppose any change in current. When current changes, the induced e.m.f. opposes the change (Lenz's Law).

Inductive reactance (X_{L}) is a measure of the opposition that an iriductor offers to alternating current and is found from the formula -

$$
X_{L}=2 \pi f L
$$

The value of current in this type of circuit can be found from the restatement of Ohms Law for inductive circuits -

$$
I=\frac{E}{X_{L}}
$$

In an inductive circuit the circuit current lags the supply voltage by 90°.
ATM: To prove that the principle of Ohms law applies in a inductive circuit.
APPARATUS: Voltmeter 0-10V (Multimeter A.P.O. No.2), Milliammeter 0-10mA (Multimeter 1mA-10A). Inductor $80 \mathrm{mH}(2)$ Oscillator $1000 \mathrm{c} / \mathrm{s}$ and Connecting Leads.

METHOD:

STEP 1. Connect the circuit as show in Fig. 1.

STEP 2. Adjusi the supply voltage tolo Volts. Measure the circuit current. Record in Table 1.

STEP 3. Increase the supply voltage to 20 Volts. Measure the circuit current. Record in Table 1.

STEP 4. Connect the two 80 mH inductors in series and repeat steps 2 and 3.
STEP 5. Using the formula $X_{L}=\frac{E}{I}$ calculate the inductive reactance for each step. Record in Table 1.

STEP 6. Using the formula $X_{L}=2 \pi f L$ calculate the inductive reactance for each step. Record in Table 1.

STEP 7. Compare the results of Steps 5 and 6.

FREQ.	L	E	$I m A$	$x_{L}=2 \pi f L$	$x_{L}=\frac{E}{I}$
1000	80 mH	10	20	500Ω	500Ω
1000	80 mH	20	40	500Ω	500Ω
1000	160 mH	10	10	1000Ω	1000Ω
1000	160 mH	20	20	1000Ω	1000Ω

TABLE 1.

TEST QUESTIONS:

1. From your results :-
increases.
(i) When the supply voltage is doubled the circuit current
decreases.
increases
(ii) When the value of inductance is increased the inductive reactance and the circuit
interest.
current ane thereon.
decreases.
2. In an inductive circuit, the circuit current is PIIRECT!Y... proportional to the supply voltage and INUERSECY proportional to the inductive reactance.
```
                                    Honds 4000
```

3. In an inductive circuit the circuit current in phase with the supply voltage by degrees. this angle is called thePHASE....... angle.
4. What value of inductance is required to give a circuit current of 50 mA when the supply voltage is 50 V .

EFFECT OF FREQUENCY ON INDUCTIVE REACTANCE.

```
Inductive reactance is a measure of the opposition that an inductor offers to alternating current and is found from the formula -
```

$$
X_{L}=2 \pi f L
$$

Inductive reactance varies with -

(i) frequency of supply
(ii) value of inductance

When stating values of inductive reactance the frequency must be given. For example a 80 mH inductor has an inductive reactance (X_{L}) of 400Ω at $800 \mathrm{c} / \mathrm{s}$.

AIM: To prove that in an inductive circuit, inductive reactance varies with frequency.

APPARATUS: Voltmeter 0-30V (Multimeter A.P.O. No.2) Milliammeter 0-60mA (Ammeter 1mA-10A) Inductor 80 mH , Oscillator Variable, and Connecting Leads.

MEITHOD:

STEP 1. Connect the circuit as shown in Fig. 1.

FIG. 1.
STEP 2. Adjust the frequency to $600 \mathrm{c} / \mathrm{s}$ and the supply voltage tols volts. Measure the circuit current. Record in Table 1.

STEP 3. Maintaining the supply voltage at 18 Volts, increase the frequency in 200 cycle steps to $1400 \mathrm{c} / \mathrm{s}$. Measure the circuit current for each step. Record in Table 1.

STEP 4. Using the formula $X_{L}=\frac{E}{I}$ calculate the inductive reactance for each step. Record in Table 1.

STEP 5. Using the formula $X_{L}=2 \pi f L$ calculate the inductive reactance for each step. Record in Table 1.

STEP 6. Compare the results of Steps 4 and 5.

STEP 7. From your results plot a graph of inductive reactance versus frequency on Graph 1.

L	FREQ.	E	$I m A$	$X_{L}=2 \pi f L$	$X_{L}=\frac{E}{I}$
80 mH	600	15	50	300	300Ω
11	800	11	37	400	405Ω
11	1000	11	30	500	500Ω
11	1200	$\prime \prime$	25	600	600Ω
1	1400	11	21	700	714Ω

TABLE 1.

1 2. List the two factors that affect inductive reactance -
(i) \qquad (ii) INDUCTAMCE
3. From your graph state the inductive reactance of (i) a 80 nH inductor at $750 \mathrm{c} / \mathrm{s}$..3.7.5.. ohns. \downarrow (ii) a 400mH inductor at 750c/s 1.8.7.5. ohms. \checkmark

CAPACITANCE AND RESISTANCE IN SERIES.

When alternating current passes through a circuit consisting of resistance and capacitance in series the total opposition is termed impedance. Symbol 2. The circuit conditions can be calculated from the restatements of Ohms Law for A.C. circuits -

$$
I=\frac{E}{Z} \quad Z=\frac{E}{I} \quad Z=\sqrt{R^{2}+X_{C}{ }^{2}}
$$

In a circuit with capacitance and resistance in series the P.D. across the resistance (E_{R}) is in phase with the circuit current (I), the P.D. across the capacitance (E_{C}) lags the circuit current by 90°, and the resultant supply voltage is obtained by graphical or vectorial addition as shown in Fig. 1.

The phase difference is shown on the vector diagram by angle θ and is calculated from -

$$
\tan \theta=\frac{E_{C}}{E_{R}} \text { or } \frac{X C}{R}
$$

FIG. 1.

AIM: To study the voltage distribution and the phase relationship of the supply voltage and circuit current in an A.C. circuit consisting of capacitance and resistance in series.

APPARATUS: Voltmeter O-30V (Multimeter A.P.O. No.2) Milliammeter 0-60mA (Multimeter 1mA-10A), Resistance $1 \mathrm{k} \Omega$, Capacitor $0.1 \mu \mathrm{~F}$, Oscillator $1000 \mathrm{c} / \mathrm{s}$ and Connecting Leads.

METHOD:

STEP 1. Connect the circuit as shown in Fig. 2.
(ii) Voltage across the resistor (E_{R})
(iii) Voltage across the capacitor (E_{C})
(iv) Circuit current (I).

FIG. 2.
STEP 3. Using Ohms Law applications calculate in Column 1, Table 2 -
(i) Resistance (R)
(ii) Capacitive reactance (X_{C})
(iii) Impedance (Z).

STEP 4. Using the formulae stated calculate in Column 2, Table 2 -
(i) Capacitive reactance (X_{C})
(ii) Impedance (Z)

STEP 5. Compare the results of steps 3 and 4.
STEP 6. (i) Draw a vector to scale using the results in Table 1.
(ii) Measure the phase angle and insert on the vector.
(iii) Calculate the phase angle.

Laboratory Projects
Ind Year

TABLE 1.

1	2		
$R=\frac{E_{R}}{I}=1000$	$R=1 \mathrm{~K} \Omega$		
$x_{C}=\frac{E_{c}}{I}=1562 \cdot 5$	$x_{c}=\frac{1}{2 \pi 4 C}$ $x_{c}=1592$		
$Z=\frac{E}{I}=1875$	$z^{2}=R^{2}+x_{c}^{2}$		
$z=1880$		\quad	EC
:---			

TABLE 2.
PHASE ANGLE

$$
\tan \theta=\frac{E_{C}}{E_{R}}=\frac{25}{16}=1-5628
$$

From tables

$$
\begin{aligned}
& \tan 1.5 .5625 .5 \\
\therefore \quad \text { Angle } 0 & =\ldots 57^{0} 23^{\prime} \\
\therefore \quad & .5 . . \text { degrees. }
\end{aligned}
$$

TEST QUESTIONS:

1. The circuit phase angle is the time difference in degrees between the supply voltage and the circuit ...fr.U.R...........
2. The values of E_{R} and E_{C} must be added vectorally to find the value of \qquad E \qquad
3. When the capacitance is halved, state the effect on -
(i) Capacitive reactance \qquad INCREASES. \qquad (ii) The impedance \qquad INCREASES \qquad
(iii) The circuit current \qquad DECREASES. (iv) The phase angle \qquad INCREASES \qquad
4. When the value of series resistance is increased, the phase angle decreases.
5. A circuit consisting of a resistor 460 and a capacitor Jus are connected in series to an alternating voltage of volts 800 cycles per second. 796 Calculate
(i) X_{C}
(ii) 2 .20.9 ohms
(iii) E_{R} \qquad 30 \qquad volts. (v) Calculate the phase angle of circuit. $53^{\circ} 8^{\prime}$

INDUCTANCE AND RESISTANCE IN SERIES.

When an alternating current passes through a circuit consisting of inductance and resistance in series the total opposition is termed impedance. The circuit conditions can be calculated from the restatement of Ohms Law for A.C. circuits -
$I=\frac{E}{Z} \quad Z=\frac{E}{I}$
$Z=\sqrt{R^{2}+X_{L}^{2}}$
The P.D. across the resistance E_{R} is "in phase" with the circuit current (I), the P.D. across E_{L} leads the circuit current by 90°, and the resultant supply voltage (E) is obtained by graphical or vectorial addition as shown in Fig. 1.

The phase difference is shown on the vector diagram by the Angle θ and is calculated from -
$\tan \theta=\frac{E_{L}}{E_{R}}$ or $\frac{X_{L}}{R}$

FIG. 1.
ATM: To study voltage distribution and phase relationship in an alternating current circuit consisting of inductance and resistance in series.

APPARATUS: Voltmeter 0-3OV (Multimeter A.P.O. No.2), Milliammeter 0-60mA (Multimeter 1mA-10A), Resistor 1 kQ , Inductor 80 mH , Oscillator $1000 \mathrm{c} / \mathrm{s}$ and Connecting Leads.

METHOD:
\qquad 1. Connect the circuit as shown in Fig. 2.

STEP 2. Measure and record in Table 1-
(i) Supply voltage (E).
(ii) P.D. across the inductor (E_{I}).
(iii) P.D. across the resistor (E_{R}).
(iv) Circuit current (I).

FIG. 2.

STEP 3. Using Ohms Law applications calculate in Column 1, Table 2 -
(i) Inductive reactance (X_{L}).
(ii) Resistance (R).
(iii) Impedance (Z).

STEP 4. Using the formulae stated calculate in Column 2, Table 2 -
(i) Inductive reactance (X_{L}).
(ii) Impedance (Z).

STEP 5. Compare the results of steps 3 and 4.
STEP 6. (i) Draw a vector diagram to scale, using the results in Table 1.
(ii) Measure the phase angle and record on the vector.
(iii) Calculate the phase angle.

TABLE 1.

1	2
$R=\frac{E_{R}}{I}=1000 \Omega$	$R=1 \mathrm{k} \Omega$
$X_{L}=\frac{E_{L}}{I}=472 \Omega$	$x_{L}=2 \pi \% L$
$x_{L}=502.4 \Omega$	
$Z=\frac{E}{I}=1111 \Omega$	$Z^{2}=R^{2}+x_{L}{ }^{2}$
$Z=1118.5 \Omega$	

TABLE 2.

PHASE ANGLE

$$
\tan \theta=\frac{E_{L}}{E_{R}}=-\frac{8 \cdot 5}{18}=\cdot 4722
$$

From tables

$$
\begin{aligned}
\tan \therefore .4722 & =25^{\circ} 16^{\prime} \\
\therefore \quad \text { Angle } \theta & =\ldots 25 . . \text { degrees } 16^{\prime}
\end{aligned}
$$

TEST QUESTIONS:

1. From your results complete the following statements
(i) The circuit current the supply voltage by ...3.5.... degrees.
(ii) The circuit current with the P.D. across the inductance by. .9 .0 .
pods
(iii) The circuit current is in phase with the P.D. across the resistance by ...O.... degrees.
tags
2. State the methods of adding (i) in phase voltages .. D!RECT......... (ii) out of phase vol tags ...UECTOR!ALC.Y
3. When the resistance of the circuit is doubled state the effect on -
(i) the impedance .
..INCREASES.
(ii) the circuit currentDE.C.E.E.S.SES.
(iii) the phase angle \qquad DECREASES

INDUCTANCE, CAPACITANCE AND RESISTANCE IN SERIES (1).

When alternating current flows in a circuit consisting of inductance, capacitance and resistance in series, a PD. exists across each component.

With respect to the circuit current, E_{R} is in phase, E_{L} leads by 90° and $E_{C} l a g s$ by 90°.

The vector sum of the P.D's equals the suoply voltage. Impedance is the total opposition offered by this type of circuit to A.C. and is calculated from the restatement of Ohms Law for A.C. circuits -

$$
I=\frac{E}{Z} \quad Z=\frac{E}{I} \quad Z=\sqrt{R^{2}+\left(X_{L}-X_{C}\right)^{2}}
$$

The resultant phase angle the circuit current makes with the supply voltage is found from -

$$
\tan \theta=\frac{E_{X}}{E_{R}} \text { or } \frac{X}{R}
$$

AIM: To study the voltage distribution and the phase relationship in a series circuit, consisting of resistance, inductance and capacitance.
APPARATUS: Voltmeter $0-30 \mathrm{~V}$ (Multimeter A.P.O. No.2) Milliammeter $0-6 \mathrm{~mA}$ (Multimeter 10A-10A), Inductor 80 mH , Capacitor $0.1 \mu \mathrm{~F}$; Resistor $1 \mathrm{k} \Omega$, Oscillator $1000 \mathrm{c} / \mathrm{s}$ and Connecting Leads.

METHOD:
STEP 1. Connect the circuit as shown in Fig. 1.

FIG. 1.
STEP 2. Measure and record in Table 1 -
(i) Supply Voltage (E)
(iii) P.D. across the resistor (ER)
(ii) P.D. across the inductor (E_{L})
(iv) P.D. across the capacitor (E_{C})
(v) Circuit current (I).

STEP 3. Using Ohms Law applications calculate in Column 1, Table 2 -
(i) Resistance (R)
(iii) Inductive reactance (X_{L})
(ii) Capacitive reactance (X_{C})
(iv) Impedance (Z).

STEP 4. Using the formulae stated calculate in Column 2, Table 2 -
(i) Capacitive reactance (X_{C}) (iipedance (Z). Inductive reactance (X_{L})

STEP 5. Compare the results of steps 3 and 4.
STEP 6. (i) From values in Table 1 construct a vector diagram to scale.
(ii) With the aid of a protractor measure the phase angle θ and record on the completed vector.
(iii) Calculate the phase angle.

and Year

TABLE 1.

1	2
$R=\frac{E_{R}}{I}=1000 \Omega$	$R=1 k \Omega$
$x_{C}=\frac{E_{C}}{I}=1625 \Omega$	$x_{C}=\frac{1}{2 \pi f C}$ $x_{C}=1592$
$x_{L}=\frac{E_{L}}{I}=500 \Omega$	$x_{L}=2 \pi f L$ $x_{L}=502.5$
$Z=\frac{E}{I}=1562.5$	$z^{2}=R^{2}+\left(x_{L}-x_{C}\right)^{2}$ $z=1478$

TABLE 2.
PHASE ANGLE

$$
\tan \theta=\frac{E_{X}}{E_{R}}=\frac{18}{16}=1 \cdot 1250
$$

From tables

$$
\begin{aligned}
& \tan 1.11250 .48 \\
& \therefore \text { Angle } \theta \text {. ...4..... degrees } \\
& \text { LEAQJous }
\end{aligned}
$$

TEST QUESTIONS:
capacitive

1. From your vector the resultant circuit is
inductive:
2. Define "Impedance"

3. When the resistance of the circuit (FIG. 1) is doubled the impedance increases because $Z=\sqrt{R^{2}+\ldots\left(\mathbb{R} \cdot \ldots R_{i}\right)^{2}}$
4. With respect to (3) -
(i) The circuit current
(iii) The phase angle decreases.
(ii) The P.D. across the inductance
decreases

INDUCTANCE, CAPACITANCE AND RESISTANCE IN SERIES (2).

When alternating current flows in a circuit consisting of inductance, capacitance and resistance in series, a P.D. exists across each component.

With respect to the circuit current, E_{R} is in phase, E_{L} leads by 90°, and E_{C} lags by 90°. The vector sum of the P.D's equals the supply voltage.

Impedance is the total opposition offered by this type of circuit to A.C. and is calculated from the restatement of Ohrs Law for A.C. circuits -

$$
I=\frac{E}{Z} \quad Z=\frac{E}{I} \quad Z=\sqrt{R^{2}+\left(X_{L}-X_{C}\right)^{2}}
$$

The resultant phase angle the circuit current makes with the supply voltage is found from -

$$
\tan \theta=\frac{E_{X}}{E_{R}} \text { or } \frac{X}{R}
$$

ADM: To study the voltage distribution and the phase relationship in a series circuit, consisting of resistance, inductance and capacitance.
APPARATUS; Voltmeter 0-10V, (Multimeter A.P.O. No.2) Milliammeter 0-10mA (Multimeter 1mA-10A), Inductor 80 mH , Capacitor $1 \mu \mathrm{~F}$, Resistor 1 kQ , Oscillator $1000 \mathrm{c} / \mathrm{s}$ and Connecting Leads.

METHOD:

STEP 1. Connect the circuit as shown in Fig. 1.

FIG. 1.

STEP 2. Measure and record in Table 1 -
(i) Supply voltage (E) (iii) P.D. across the resistor (E_{R})
(ii) P.D. across the inductor (E_{L}) (iv) P.D. across the capacitor (E_{C})
(v) Circuit current (I).

STEP 3. Using Ohms Law applications calculate in Column 1, Table 2 -
(i) Resistance (R)
(iii) Inductive reactance (X_{L})
(ii) Capacitive reactance (X_{C})
(iv) Impedance (Z).

STEP 4. Using the formulae stated calculate in Column 2, Table 2 -
(i) Capacitive reactance (X_{C}) (ii) Inductive reactance ($X_{\mathcal{L}_{1}}$) (iii) Impedance (Z).

STEP 5. Compare the results of steps 3 and 4.
STEP 6. (i) From values in Table 1 construct a vector diagram to scale.
(ii) With the aid of a protractor measure the phase angle θ and insert on the vector.
(iii) Calculate the phase angle.

2nd Year

E_...... VOLTS	$E_{\text {L }} \ldots . . .$. VOLTS	$E_{\text {R }} \ldots \ldots$ VOLTS	Ec_-.-_VOLTS	I - - - - mA

TABLE 1.

1	
$R=\frac{E_{R}}{I}=$	$R=1 K \Omega$
$X_{C}=\frac{E_{C}}{I}=$	$x_{C}=\frac{1}{2 \pi+C}$
$X_{C}=$	
$X_{L}=\frac{E_{L}}{I}=$	$X_{L}=2 \pi+L$
$X_{L}=$	
$I=\frac{E}{I}=$	$Z^{2}=R^{2}+\left(X_{L}-x_{C}\right)^{2}$
$Z=$	

TABLE 2.

PHASE ANGLE

$\tan \theta=\frac{E_{X}}{E_{R}}$ \qquad $=$

From tables

\tan \qquad = \qquad
\therefore Angle θ \qquad degrees.

IEST QUESIIONS:

capacitive.

1. From your vector the resultant circuit is resistive.
inductive.
2. When the inductarice of the circuit (FIG. 1) is doubled
increases
the inductive reactance remains the same
decreases
increases
the circuit current remains the same
decreases
increases
the impedance remains the same
decreases
increases
the P.D. across the inductor remains the same
decreases
increases
the resultant phase angle remains the same decreases

INDUCTANCE, CAPACITANCE AND RESISTANCE IN SERIES (3).

When a varying frequency alternating current supply is connected to inductance resistance and capacjtance in series such as bell and capacitor in a telephone circuit, the circuit current increases until it reaches a maximum at one particular frequency (resonant frequency). When the frequency is further increased the circuit current decreases.

ADM: To study
(i) the effect of a varying frequency on a telephone ringing circuit.
(ii) the impedance offered by this circuit at voice frequency.

APPARATUS: Voltmeter 0-GOV (Multimeter A.P.O. No.2), Milliammeter 0-60mA (Ammeter 1mA-10A), Telephone Bell 59U; Capacitor $1.7 \mu \mathrm{~F}$, Oscillator Variable and Connecting Leads.

METHOD:

STEP 1. Connect the circuit as shown in Fig. 1.

FIG. 1.

STEP 2. Increase the frequency to $15 \mathrm{c} / \mathrm{s}$ and adjust the supply voltage (E) to 25 Volts. Measure the circuit current. Record in Table 1.

STEP 3. Maintaining the supply voltage (E) at 25 Volts increase the frequency in 5 cycle steps to $45 \mathrm{c} / \mathrm{s}$. Measure the circuit current for each step. Record in Table 1.

STEP 4. Maintaining the supply voltage (E) at 25 Vclts increase the frequency to $1000 \mathrm{c} / \mathrm{s}$. Measure the circuit current. Reconi in Table 1.

STEP 5. Plot a graph of frequency versus current on Graph 1.

1. From your results :-
(i) At what frequency did electrical resonance take place?
(ii) Calculate the impedance of the circuit at :-

$30 c / \mathrm{s}$	$1000 \mathrm{c/s}$
$z=\frac{E}{I}=1667 \mathrm{~K}$	$z=\frac{E}{1}=25 \mathrm{KN}$

2. In a telephone circuit the bell and capacitor are across the line during conversation. What effect does this have on

Why is this so?

EFFECT OF FREQUENCY IN L, C AND R SERIES CIRCUITS.

```
When a variable frequency supply is connected to a circuit consisting of \(L, C\) and \(R\) in series, at one particular frequency the effect of the inductance and capacitance are equal but opposite, and, the circuit behaves as if it contains of resistance alone.
AIM: To study the effect of frequency variation through resonance in an A.C. circuit consisting of \(\mathrm{L}, \mathrm{C}\) and R in series.
```


APPARATUS:

```
Voltmeter \(0-10 \mathrm{~V}\) (Multimeter A.P.O. No.2) Milliameter O-10mA (Multimeter \(1 \mathrm{~mA}-10 \mathrm{~mA}\) ), Oscillator Variable, Inductor 80 mH , Resistor \(200 \Omega\), Capacitor \(0.33 \mu \mathrm{~F}\), and Connecting Leads.
```


METHOD:

STEP 1. Connect the circuit as shown in Fig. 1.

FIG. 1.

STEP 2. Adjust the frequency to 600 cycles with the supply voltage at 8 Volts. Measure the circuit current. Record in Table 1.

STEP 3. With the supply voltage at Volts, increase the frequency as per Table 1 up to 1400 cycles. Measure the circuit current for each step. Record in Table 1.

STEP 4. Calculate in Table 1 the impedance for each step.

STEP 5. Plot a graph of -
(i) Circuit current versus frequency.
(ii) Impedance versus frequency.

STEP 6. Indicate the resonant frequency on the graph.

\star TEST QUESTIONS:
FREQUENCY IN CPS.

1. In a circuit consisting of L, C and R in series at resonance -

2. When the resistance of a series resonant circuit is halved the circuit current is therefore

doubled.
increases

the ne. Any variation in resistance does not change the resonant frequency of the circuit.
E_{L} and E_{C} will he the ene. Any variation in resistance does not

EFFECT OF FREQUENCY ON $E_{R} E_{L}$ AND E_{C} IN A SERIES A.C. CIRCUIT.

In a circuit consisting of L, C and R is series at resonance the potential drops across the reactive components are equal and can exceed the supply voltage many times.

AIM: To study the effect of frequency variation on E_{R}, E_{L} and E_{C} in an A.C. series circuit.

APPARATUS: Voltmeter 0-10V (Multimeter A.P.O. No.2), Oscillator Variable, Inductor 80 mH , Resistor 200』, Capacitor 0.33, NF and Connecting Leads.

METHOD:

STEP

1. Connect the circuit as shown in Fig. 1.

FIG. 1.

STEP 2. Adjust the supply frequency to 600 cycles with the supply voltage at 2 Volts.

STEP 3. Measura -
(i) E_{R}
(ii) E_{L}
(iii) E_{C}

Record in Table 1.

STEP 4. With the supply voltage at 2 Volts increase the frequency as per Table 1 up to 1400 cycles. Repeat Step 3 for each value.

STEP 5. Plot a graph of -
(i) E_{R}
(ii) E_{L}
(iii) E_{C}
against frequency on Graph 1.

2nd Year

FREQ	E_{R}	E_{L}	E_{C}	FREQ	E_{R}	E_{L}	E_{C}
600	1.7	2.6	7.3	1000	4.6	12	11
700	2.4	4.4	36	1100	4	11.5	9
200	3.3	6.9	10	1200	3.3	10	72
900	4.3	10	12	1300	2.7	9.3	5.4
				1400	2.3	8.6	4.2

TABLE 1.

IEST QUESTIONS:

1. Below the resonant frequency E_{C} is greater than E_{L}.
[^0]
SERIES RESONANCE.

When a variable frequency supply is connected to a circuit consisting of L, C and R in series, at one particular frequency the circuit behaves as if it consists of resistance alone, and, the circuit current (I) is "in phase" with the supply voltage (\mathbb{E}). This is the resonant frequency of the circuit.

The ratio of the P.D. developed across the reactance, to the P.D. across the resistance is indicated by a number called the Q factor.

This ratio or voltage magnification is dependent upon the relative values of reactance and resistance, and is found from -

$$
Q=\frac{X_{L}}{R} \quad \text { or } \quad \frac{E_{L}}{E} \quad\left(\text { as } E=E_{R} .\right)
$$

AIM: To study the voltage distribution in a series circuit consisting of L, C and R at resonance.

APPARATUS:
Voltmeter 0-10V (Multimeter A.P.0. No.2), Milliammeter 0-10mA (Multimeter 1mA-10A), Resistance 2008, Inductor 80 mH , Capacitance $0.33 \mu \mathrm{~F}$, Oscillator $1000 \mathrm{c} / \mathrm{s}$ and Connecting Leads.

METHOD:

STEP

1. Connect the circuit as shown in Fig. 1.

STEP 2. Measure and record in Table 1-
(i) Supply Voltage (E). (iii) P.D. across the resistor (E_{R}).
(i.i) P.D. across the inductor (E_{L}). (iv) P.D. across the capacitor $\left(\mathbb{E}_{C}\right)$.
(v) Circuit current (I).

STEP 3. Using Ohms Law applications calculate in Column 1, Table 2 -
(i) Resistance (R). (iii) Inductive reactance (X_{L}).
(ii) Capacitive neactance (X_{C})......(iv.) Impedance. (Z).

STEP 4. Using the formulae stated calculate in Column 2, Table 2 -
(i) Inductive reactance $\left(\mathrm{X}_{\mathrm{L}}\right)$, (iii) Impedance (Z).
(ii) Capacitive reactance $\left(X_{C}\right)$.

STEP 5. Compare the results of steps 3 and 4.
STEP 6. Draw a vector diagram to scale, of the results in step 2.

2nd Year

TABLE 1.

I	2
$R=\frac{E_{Q}}{I}=$	$R=200 \Omega$
$X_{L}=\frac{E_{L}}{I}=$	$X_{L}=2 \pi f L$
$X_{L}=$	
$X_{C}=\frac{E_{C}}{I}=$	$X_{C}=\frac{1}{2 \pi+C}$
$X_{C}=\frac{E}{I}=$	$Z^{2}=R^{2}+\left(x_{L}-x_{C}\right)^{2}$
$Z=$	

TABLE 2.

Q FACTOR

$Q=\frac{E_{L}}{E_{R}}$
\therefore Q of circuit
\qquad $=. \ldots \ldots$.
\qquad

TEST QUESTIONS:

1. From your results and vector diagram list five conditions that exist when a series circuit is resonant.
(i) \qquad
(ii)
(iii) \qquad
(iv) \qquad
(v)
2. A circuit consisting of t; 0 and R is resonant at $1000 \mathrm{c} / \mathrm{s}$. When the frequency of the suppily, iss dear eased, the capacitive.
resultant circuit becomes resistive. inductive.
3. A 80 mH inductor and a $0.33 \mu \mathrm{~F}$ Capacitor resonates at $1000 \mathrm{c} / \mathrm{s}$. When the inductance is increased to 160 mH , what value of capacity is needed for res onance at the same frequency.

CAPACITANCE AND RESISTANCE IN PARALLEL.

When an alternating e.m.f. is connected to a circuit consisting of capacity and resistance in parallel the circuit current will divide into two branches I_{R} and I_{C}.

The current through the resistor (I_{R}) is "in phase" with the supply voltage (E), the current through the capacitor (I_{C}) leads the supply voltage by 90°.

The circuit current (I) is the vector sum of I_{R} and I_{C} and leads the supply voltage (E) by some angle between 0° and 90° as in Fig. 1.

The phase angle θ is calculated from

$$
\tan \theta=\frac{I_{C}}{I_{R}}
$$

FIG. 1.

The total opposition a parallel circuit offers to alternating current is termed impedance and is calculated from -

$$
Z=\frac{E}{\bar{I}}
$$

AIM: To study (i) the current distribution, (ii) phase relationship in a circuit consisting of capacitance and resistance in parallel.

APPARATUS: Voltmeter 0-30V (Multimeter A.P.O. No.2), Milliammeter $0-60 \mathrm{~mA}$ (Ammeter $1 \mathrm{~mA}-10 \mathrm{~A}$), Oscillator $1000 \mathrm{c} / \mathrm{s}$, Capacitor $0.1 \mu \mathrm{~F}$, Resistor $1 \mathrm{k} \Omega$ and Connecting Leads.

METHOD:

STEP 1. Connect the circuit as shown in Fig. 2.

STEP 2. Measure and record in Table 1 -
(i) Supply voltage (E).
(ii) Circuit current (I).
(iii) Current through the resistor (I_{R}).
(iv) Current through the capacitor (I_{C}).

STRP 3. Using formulae stated, calculate in Table 2 -

FIG. 2.
(i) Resistance (R).
(ii) Capacitive reactance (X_{C}).
(iii) Impedance (Z).
(iv) Current through the resistor (I_{R}).
(v) Current through the capacitor (I_{C}).
(vi) Circuit Current (I).

STEP 4 4. Compare the results of steps 3 (iv), (v) and (vi) with the results of step 2.

STRP 5
5. (i) Prepare a vector diagram from the results of step 2.
(ii) Measure tine circuit current on the vector and compare with the meter reading in Table 1.
(iii) Calculate the phase angle.
(iv) Measure the phase angle and compare with the calculated value.

Ind Year

E.15 voLTS	$1.19 . \mathrm{mA}$	$I_{R}-15.5 \mathrm{~mA}$	$\mathrm{I}_{\mathrm{c}}-9.5 \mathrm{~mA}$

TABLE 1. PRACTICAL VALUES

TABLE 2. THEORITICALL VALUES

PHASE ANGLE THEORY
$\tan =\frac{I_{C}}{T_{R}}=-\frac{9 \cdot 5}{15 \cdot 5}=0.61 .29$.
From tables PRACTICAL VACUES

$$
\tan 96129=31^{\circ} 50^{\prime}
$$

$$
\therefore \quad \text { Angle }=31^{\circ} \ldots .30^{\circ} \text {. degrees. }
$$

TEST QUESTIONS:

1. In a circuit containing Capacitance and Resistance in parallel :-

the ran

(i) The P.D. across the resistor is the supply voltage.
(i) The P.D. across the resistor is the same as the supply voltage.

less-mant

(ii) The P.D. across the capacitor is the same as supply voltage.
4. (iii) The current and voltage of the resistive branch are \qquad phase.

(v) When C and R are connected in parallel te ar. alternating current supply, the circuit current leads the
supply voltage.

the same as in

INDUCTANCE AND RESISTANCE IN PARALLEL.

When an alternating e.m.f. is connected to a circuit consisting of inductance and resistance in parallel the circuit current (I) divides into two branches I_{L} and I_{R}.

The current in the resistive branch (I_{R}) is "in phase" with the supply voltage (E), the current in the inductive branch (I_{L}) lags the supply voltage by 90°.

The circuit current (I) is the vector sum of I_{L} and I_{R} and lags the supply voltage by some angle between 0° and 90° as in Fig. 1.

FIG. 1.

The total opposition a parallel circuit offers to alternating current is termed impedance (2) and is calculated from -

$$
Z=\frac{E}{I}
$$

ATM: The study (i) the current distribution (ii) the phase relationship in a circuit consisting of L and R in parallel.

APPARATUS:
Voltmeter 0-10V (Multimeter A.P.0. No.2), Milliammeter 0-10mA (Aximeter $1 \mathrm{~mA}-10 \mathrm{~A}$), Inductor 80 mH , Resistor $1 \mathrm{k} \Omega$, Oscillator $1000 \mathrm{c} / \mathrm{s}$ and Connecting Leads.

METHOD:
STEP 1 1. Connect the circuit as shown in Fig. 2.

STEP 2 2. Measure and record in Table 1 -
(i) Supply voltage (E). (iii) Current through the resistor (I_{R}).
(ii) Circuit current (I). (iv) Current through the inductor (I_{L}).

STEP 3. Using formulae stated, calculate in Table 2 -
(i) Resistance (R).
(ii) Inductive reactance (X_{L}).
(iii) Impedance (Z).
(iv) Current through the resistor (I_{R}).
(v) Current through the inductor (I_{L}).
(vi) Circuit current (I).

STEP 4. Compare the results of step 3 (iv), (v) and (vi) with the results of step 2.

STEP 5. (i) Prepare a vector diagram from results of step 2.
(ii) Measure the circuit current on the vector and compare with the meter reading in Table 1.
(iii) Calculate the phase angle.
(iv) Measure the phase angle and compared with the calculated value.

$R=I K \Omega$	$I_{R}=\frac{E}{R}=$
$X_{L}=2 \pi f L$	
$X_{L}=$	$I_{L}=\frac{E}{X_{L}}=$
$Z=\frac{E}{I}=$	$I=\sqrt{I_{R}{ }^{2}+I_{L}{ }^{2}}$

TABLE 2.

PHASE ANGLE
$\tan \theta=\frac{I_{L}}{I_{R}}=$ \qquad $\therefore=$

From tables

\qquad
\therefore Angle $\theta=\ldots \ldots .$. ... degrees.

IEST QUESTIONS:

1. From your results and vector diagran:-
(i) The circuit current (1) is the Vector Sum of \qquad and. \qquad and leads the supply voltage by \qquad degrees.
2. When the resistance is decreased to 500 ohns:-
increases
(i) I_{R} remains the same, ($I_{R}=\ldots \ldots \ldots$.)
decreases
increases
(ii) The circuit current remains the same, since the circuit current (1) is the Vector Sum of and decreases
increases
(iii) The resultant impedance remains the same, since $Z=\ldots \ldots \ldots \ldots$ and the circuit phase angle increases $\begin{aligned} \text { decreases } \\ \text { decreases }\end{aligned}$

L, C AND R IN PARALLEL (1).

When an alternating e.m.f. is connected to a circuit consisting of L, C and R in parallel the circuit current divides into three brenches, I_{L}, I_{C} and I_{R}. The current in the resistive branch (I_{R}) is "in phase" with the supply voltage, the current in the inductive branch lags the supply voltage by 90°, the current in the capacitive tranch leads by 90°. The circuit current is the vector sum of I_{R} and $I_{L}-J_{C}$ as in Fig. 1.

The phase angle θ is calculated from -

AIM: To study (i) the current distribution and, (ii) the phase relationship in a circuit consisting of L, C and R in parallel.

APPARATUS:
 Voltmeter O-10V (Multimeter A.P.O. No.2) Milliammeter O-10mA (Kultimeter $1 \mathrm{~mA}-10 \mathrm{~A}$), Oscillator $1000 \mathrm{c} / \mathrm{s}$, Inductor 80 mH , Capacitor $0.1 \mu \mathrm{~F}$, Resistor $1 \mathrm{k} \Omega$ and Connecting Leads.

METHOD:

STEP 1 - Connect the circuit as show in Fig. 2.

\qquad . Measure and record in Table 1 -
(i) Supply voltage (E).
(iv) Current through the capacitor (I_{C}).
(ii) Circuit current (I)
(v) Current through the resistor ($I_{\text {R }}$).
(iii) Current through the inductor (I_{L}).

STEP 3. Using formulae stated, calculate in Table 2 -
(i) Resistance (R).
(v) Current through the capacitor (I_{C}).
(ii) Capacitive reactance (X_{C}).
(iii) Inductive reactance $\left(\mathrm{X}_{\mathrm{L}}\right)$.
(vi) Current through the inductor (I_{L}).
(iv) Impedance (Z).
(vii) Current through the resistor (I_{R}).
(viii) Circuit current (I).

STEP 4. Compare the results of steps $3(v)$ to (viii) with the results of step 2.
STEP 5.
(i) Prepare a vector diagram from the results in Table 1.
(ii) On the completed vector measure the resultant circuit current and compare with the meter reading in Table 1.
(iii) Calculate the phase angle.
(iv) Measure the phase angle and compare with the calculated value.

Laboratory Projects
PROJECT NO. 17

end Year

TABLE 1.

$R=0.5 \mathrm{k} \Omega$	$I_{R}=\frac{E}{R}=10 \mathrm{~mA}$
$x_{C}=\frac{1}{2 \pi f C}$	
$x_{C}=1592 \Omega$	$I_{C}=\frac{E}{x_{C}}=6.28 \mathrm{~mA}$
$x_{L}=2 \pi f C$	
$x_{L}=502.5 \Omega$	$I_{L}=\frac{E}{X_{L}}=19.9 \mathrm{~mA}$
$Z=\frac{E}{I}=588 \Omega$	$I=\sqrt{I_{R}{ }^{2}+\left(I_{L}-I_{C}\right)^{2}}$
$I=16.8 \mathrm{~mA}$	

TABLE 2.

PHASE ANGLE

$$
\tan \theta=\frac{L-1 C}{I_{R}}
$$

Frontables

$$
\begin{aligned}
& \tan \text { I: } 3620=53^{\circ} \ldots 43! \\
& \therefore \quad \text { Angle } \theta=53^{\circ} \ldots 43^{\prime} \ldots \text { CAGING }
\end{aligned}
$$

TEST QUESTIONS:

1. From your results:-
(i) The circuit current (1) is the Vector Sum ofI.R.... and .|.........|c...
(ii) The circuit current ${ }_{\text {lags }}^{\text {treads }}$ the supply vol age by $\left\{3_{3}^{0}\right.$.. 4,3 .. degrees. \checkmark
increases
increases
2. When the value of capacitance in. Fig. 2 is increased to $0.5 \mu F, X_{C}$, remains the same, IC , remains the same, and the resultant phase angle is $\begin{aligned} & \text { increased } \\ & \text { decreased }\end{aligned}$
3. What would be the effect on the following when the value of resistance in Fig. 2 is disconnected

$$
\begin{aligned}
& \text { L . .REMAMMS....SAME. } \\
& \text { circuit currentECREASES. }
\end{aligned}
$$

L, C AND $R \mathbb{I N}$ PARALLEL (2).

When an alternating e.m.f. is connected to a circuit consisting of L, C and R in parallel the circuit current divides into three branches, I_{L}, I_{C} and I_{R}. The current in the resistive branch (I_{R}) is "in phase" with the supply voltage, the current in the inductive branch lags the supply voltage (E) by 90°, the current in the capacitive branch leads by 90°. The circuit current is the vector sum of I_{R} and $I_{C}-I_{L}$ as in Fig. 1.

FIG. 1.

The phase angle θ is calculated from -

$$
\tan \boldsymbol{\theta}=\frac{I_{C}-I_{L}}{I_{R}}
$$

ATM: To study (i) the current distribution; and,
(ii) the phase relationship in a circuit consisting of L, C and R in parallel.

APPARATUS: Voltmeter 0-30V (Multimeter A.P.O. No.2), Milliammeter 0-60mA (Multimeter 1mA-10A), Oscillator $1000 \mathrm{c} / \mathrm{s}$, Inductor 80 mH , Capacitor $1 \mu \mathrm{~F}$, Resistor $1 \mathrm{k} \Omega$ and Connecting Leads.

METHOD:

STEP 1 1. Connect the circuit as shown in Fig. 2.

STEP 2. Measure and record in Table 1-
(i) Supply voltage (E) (iv) Current through the capacitor (I_{C})
(ii) Current through the inductor (I_{L}) (v) Circuit current (I)
(iii) Current through the resistor (I_{R})

STEP 3. Using forroulae stated, calculate in Table 2 -
(i) Resistance (R)
(ii) Capacitive reactance (X_{C})
(iii) Inductive reactance (X_{L}) (vii) Current through the resistor (I_{R})
(v) Current through the capacitor (I_{C})
(iv) Impedance (2)
(viii) Circuit current (I).

STEP 4. Compare the results of step $3(v)$ to (viii) with the results of step 2.
STEP 5. (i) Prepare a vector diagram from the results in Table 1.
(ii) On the completed vector measure the resultant circuit current and compare with the meter reading in Table 1.
(iii) Calculate the phase angle.
(iv) Measure the phase angle and compare with the calculated value.

Laboratory Projects
PROJECT NO. 18
Ind Year

PRACTICAL | E... VOLTS | L. 35 mA |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Theory

| $R=1 \mathrm{~K} \Omega$ | $I_{R}=\frac{E}{R}$ | 5 mA |
| :--- | :--- | :--- |$\quad / L+/ R$

THEORY PHASE ANGL
$\tan \theta=\frac{I^{C}-L}{I_{R}}=4.32 . .=$
From tables

$$
\begin{aligned}
& \tan .4 .32 \ldots=76^{\circ} .53 \\
& \therefore \quad \text { Angle } \theta=.76^{\circ} .53^{\prime} \\
& \therefore \text { LEADING }
\end{aligned}
$$

TEST QUESTIONS:

1. From your results:-
(i) The circuit current (1) is the vector Sum of|.R....... and
(ii) The circuit current leads the supply voltage (E) by $.7 .6 \ldots .5$. degrees.
2. When the resistance of the circuit is doubled -

InRi $\begin{aligned} & \text { decreases }\end{aligned}$
decreases

नापन्टascs decreases
increases
2.

正
3. When the frequency is increased:-
 increases

deerienes

4. How do the results of this project differ from those of project 17.

EFFECT OF FREQUENCY IN L AND C PARALLEL CIRCUITS

When a variable frequency supply is connected to a circuit consisting of L and C in parallel, at one particular frequency the currents in the inductive branch and the capacitive branch are equal but 180 degrees "out of phase", thus the resultant or circuit current is zero. This is the resonant frequency.

In a practical circuit, due to the resistance of the inductor, a low value of circuit current will flow. This current is "in phase" with the supply voltage.

AIM: To study the effects of frequency variation through resonance, in a circuit consisting of inductance and capacitance in parallel.

APPARATUS: Voltmeter O- B OV (Multimeter A.P.O. No.2), Williammeter 0-60mA (Multimeter 1mA-10A), nscillator Variable, Inductor 80 mH , Capacitor $0.33 \mu \mathrm{~F}$ anci Connecting Leads.

METHOD:

STEP 1. Connect the circuit as shown in Fig. 1.

FIG. 1.

STEP 2. Adjust the frequency to $600 \mathrm{c} / \mathrm{s}$ and the supply voltage (E) to 20 Volts. Measure the circuit current. Record in Table 1.

STEP 3. Maintaining the supply voltage at 5 Volts increase the frequency in 100 cycle steps to $1400 \mathrm{c} / \mathrm{s}$. Measure the circuit current for each step. Fecord in Table 1.

STEP 4. Calculate in Table 1 the impedance for each step.

STEP 5. Plot a graph of circuit current versus frequency (Graph 1).

STEP 6. On the same graph plot impedance versus frequency.

Laboratory Projects

2nd Year

CCT

CURREMTmA

FREQ.	E	I mA	$z=\frac{E}{t}$	FREQ	E	1 mA	$z=\frac{E}{1}$
600	20	43	$46 / 5$	1000	20	2	10800
700	20	29	$69^{\prime} 0$	1100	20	q	2353
800	20	17	1176	1200	20	17	125
900	20	7	2852	1300	20		865
$\begin{gathered} 980- \\ 0 \end{gathered}$	20	N	zok	1400	20	39	$667 v$

TABLE 1.

PARALLEL RESONANCE.

When an alternating e.m.f. is connected to a circuit consisting of I and C in parallel, the circuit current divides into two branches I_{L} and I_{C}.

At one particular frequency (rescnant frequency) where $I_{L}=I_{C}$ the circuit current is zero; therefore at resonance the impedance of the circuit is infinite.

In a parallel circuit, the Q factor is a number which incicates how many times the circulating current at resonance is greater than the circuit current. Q factor is calculated from -

$$
Q=\frac{I_{C} \text { or } I_{L}}{I} \text { where } I_{C} \text { or } I_{L} \text { is taken as the circulating current. }
$$

ATM: To study current distribution in a parallel resonant circuit.

APPARATUS: Voltmeter 0-30V (Multimeter A.P.O. No.2), Millianimeter 0-6mA (Ammeter 1mA-10A), Oscillator $1000 \mathrm{c} / \mathrm{s}$, Inductor 80 mH , Capacitor $0.33 \mu \mathrm{~F}$, and Connecting Leads.

- METHOD:

STEP 1. Connect the circuit as shown in Fìg. 1. Adjust frequency for minimum current ($1,000 \mathrm{c} / \mathrm{s}$ approx.).

FIG. 1.

STEP 2. Measure and record in Table 1-
(i) Supply voltage (E)
(ii) Circuit current (I)
(iii) Current through the inductor (I_{L})
(iv) Current through the capacitor (I_{C}).

STEP 3. Using formulae stated, calculate in Table 2 -
(i) Capacitive reactance (X_{C})
(ii) Inductive reactance $\left(X_{L}\right)$
(iv) Current through the capacitor (I_{f})
(iii) Impedance (Z)
(v) Current through the inductor. (I_{L})
(v) Current through the
(vii) Q factor.

STEP 4. Compare the results of step 3 (iv) to (vi) with the measured values in Table 1.

STEP 5. Prepare a vector diagram from the results in Table 1.

2nd Year

TABLE 1.

TABLE 2 .

IESI QUESTIONS:

1. From your results :-

The circuit current is minimum and is ..I.M.... phase with the supply voltage, with a phase angle of \qquad The impedance of the parallel circuit at resonance is AT...A...MAXIGM.......IMFIMITY.
2. List two methods used to make a circuit resonate when the circuit current lags the supply voltage.
(i). DECREASE TME Inductame
(ii) .INGREASE THE CAPRATY \qquad
3. A circuit consisting of L and C in parallel is resonant at $1000 \mathrm{c} / \mathrm{s}$. When the frequency is increased increases
(i) The inductive reactance remains the same, and the current in the inductive branch (I_{L})

$$
I_{L}=\ldots \times \ldots
$$

(ii) The capacitive reactance memains=one and the current in the capacitive branch (${ }_{C}$)

$$
a s I_{c}=. \sqrt{\frac{E}{2} c} \ldots .
$$ decreases

increases duchess
greater than

METAL RECTIFIERS.

```
A metal rectifier is a semi-conductor device which allows current to pass more readily in one direction than the other.
When the voltage is increased in the conducting direction, the resistance decreases to a lo:y value, thus, the rentifier has a non-linear resistance voltage characteristic.
ATM: To study -
```

(i) the voltage/current characteristic;
(ii) the voltage/ resistance characteristic of a metal rectifier.

APPARATUS: Voltmeter 0-50V (Multimeter A.P.O. No.2), Milliammeter 0-100mA (Multimeter 50 $\mathrm{HA}-1 \mathrm{~A}$) Variable D.C. Supplies $0-20 \mathrm{~V}, 0-3 \mathrm{~V}$, Metal Rectifier $1 / 6 \mathrm{C}$ and Connecting Leads.

METHOD:

STEP 1: Connect the circuit as shown in Fig. 1.

STEP 2: Adjust the input voltage to 2 Volts. Neasure the circuit current. Record in Table 1.

STEP 3: Decrease the input voltage in 0.5 Volt steps to 0 Volts. Measure the circuit current for each step. Record in Table 1.

STEP 4: Connect the circuit as shown in Fig. 2.

FIG. 2.
STEP 5: Adjust the input voltage to 20 Volts. Measure the circuit current. Record in Table 1.

STEP 6. Decrease the input voltage in 5 Volt steps to 0 Volts. Measure the circuit current for each step. Record in Table 2.

STEP 7: Calculate values of resiatance ir Tables 1 and 2.
$52 / 1 / 3$
PROJECT NO. 21

and Year

STEP 8. (i) Complete a graph of Current/Voltage for conducting and non-conducting directions on Graph 1.
(ii) Complete a graph of Resistance/Voltage for each step on Graph 2.

E	I	$R=\frac{E}{I}$
2.0	4.3	470
1.5	2.0	750
1.0	.2	5000
0.5	0	∞

TABLE 1.

E	I	$R=\frac{E}{I}$
20	30	667 K
15	22	682 K
10	15	667 K
5	10	500 K

TABLE 2.

TEST QUESTIONS:

1. From your graphs -

Compare the resistance of the rectifier, forward and reverse, when the input voltage is 2 Volts.

...THE.......REUERSE......!RECT!

RECTIFICATION.

Metal rectifiers can be used for half or full wave rectification, that is, to change alternating current into direct current pulses.

AIM: To study metal rectifiers connected for half and full wave rectification.
APPARATUS: Voltmeter 0-50V (Multimeter A.P.O. No.2) Transformer 4012A, Resistor 0.5k 2 , Metal Rectifiers $1 / 12 \mathrm{~A}$, Supply Voltage $50 \mathrm{~V} 50 \mathrm{c} / \mathrm{s}$ and Connecting Leads.

METHOD:

STEP 1. Connect the circuit as shown in Fig. 1.

FIG. 1 .
STEP 2. Adjust the supply voltage to 20 Volts.
Measure the P.D. across load resistor. Record value in Table 1 and polarity on Fig. 1.

STEP 3. Connect the circuit as shown in Fig. 2.

FIG. 2.

STEP 4. Adjust the supply voltage to 20 Volts. Measure the P.D. across the load resistor. Record value in Table 1 and polarity on Fig. 1.

Laboratory Projects
and Year

CIRCUIT	LOAD	volts	I
HALF WAVE	$0.5 \mathrm{k} \Omega$	3.5	7 mA
FULL WAVE	$0.5 \mathrm{k} \Omega$	6.2	14 mA

TABLE 1.

TEST QUESTIONS:

REASON.
(ii) Using the circuit (FIG. 2) explain briefly how full-wave rectification is effected.

EFFECTS OF FILTERS.

An output filter is used to reduce or eliminate the A.C. component or "ripple" from the direct current output of a rectifying circuit.

AIM: To analyse filtering methods.

APPARATUS: Supply Voltage 12 V AC, Rectifier Bridge, Milliammeter 0-10mA (Multimeter DC 5quA-1A), Load resistor $2.2 \mathrm{k} \Omega$, Receiver, Capacitor $4 \mu \mathrm{~F}$, Inductor 14 H 60 mA , and Connecting Leads.

METHOD:

STEP 1. Connect the circuit as shown in Fig. 1.

FIG. 1.

STEP 2. Listen with the receiver-note value of direct current as indicated by meter. Note: $100 \mathrm{c} / \mathrm{s}$ ripple heard in receiver.

STEP 3. Connect the circuit as shown in Fig. 2.

FIG. 2.

STEP 4. Listen with the receiver with the inductor in circuit.
Note the effect on ripple content compared to negligible decrease in current.

2nd Year

STEP 5. Connect the circuit as show in Fig. 3.

FIG. 3.

STEP 6. Listen with the receiver.
Again note the effect on ripple content and value of direct current.

TEST QUESTIONS:
increases ?

1. In Step 4 the ripple content through the receiver remains the sane because the inductor offered a high reactance to the decreases
100 cycle ripple frequency.
increases
2. In Step 6 the ripple content through the receiver remains the same due to the high reactance shunt path of the capacitance at the ripple frequency.
[^1]
TYPES OF FILTERS.

In Telecom. many different types of filters are used. The type of filter used ir; a particular circuit and the values of the components depends on circuit requirements.

AIM: To study types of filters used in telecommunication.
APPARATUS: Supply Voltage $12 \mathrm{~V} 50 \mathrm{c} / \mathrm{s}$, Rectifier Bridge ($1 / 12 \mathrm{~A}$), Capacitors 4 HF , Inductor 14 H 60 mA , Receiver, Resistor $2.2 \mathrm{k} \Omega$ and Connecting Leads.

METHOD:

STEP 1. Connect the circliit a.s shown in Fig. 1.

FIG. 1.

STEP 2. Listen with the receiver. Note the level of the ripple content.
STEP 3. Connect the capacitor $C 1$ in circuit as shown in Fig. 1.
STEP 4. Listen with the receiver. Note the level of ripple decrease.
STEP 5. Connect the inductor (L) in circuit as shown in Fig. 2.

STEP 6. Listen with the receiver and note the effect in ripple level.
STEP 7. Connect the capacitor C 2 into circujt as showr in Fig. 2. Listen across the receiver and note the effect in ripple level.

end Year

DEMONSTRATION

STEP 8. Connect the C.R.O. across the resistor. Repeat Steps 3, 5, 7. For each step record the input and output wave form of 2 cycles on Graphs 1, 2 and 3.

GRAPH 1.

GRAPH 2.

GRAPH 3.

1. In the filter circuit (Fig. 2) the inductor is in series with the output and offers a high reactance to the ripple frequency, whilst the capacitors being in parallel with the output offer a $\begin{aligned} & \text { nigh } \\ & \text { low }\end{aligned}$ frequency.
2. From Graph 3b the output of a capacitor input filter is direct current.
atternatimy
3. Under what circumstances could a resistor be used in place of the inductor?

VALVE CONSTANTS (1).

The inherent characteristics of an electron tube that determine its suitability for a particular purpose are termed CONSTANTS, of which there are three -

$$
\begin{aligned}
& \text { (i) Amplification factor }(\mu) \frac{\text { change } E_{a}}{\text { change } E_{g}} \text { for same change } I_{a} \text {. } \\
& \text { (ii) Anode resistance }\left(r_{a}\right) \\
& \frac{\text { change } E_{a}}{\text { change } I_{a}} E_{g} \text { constant } \\
& \text { (iii) Mutual conductance }\left(g_{m}\right) \\
& \frac{\text { change } I_{2}}{\text { change } E_{g}} E_{a} \text { constant. }
\end{aligned}
$$

ADM: To plot a "family" of mutual characteristic ($\mathrm{I}_{\mathrm{a}} / \mathrm{Eg}$) curves of a triode electron tube, and to determine from them values for the tube constants at a typical working point.

APPARATUS: Voltmeter 0-300V (Multimeter A.P.O. No.2), Milliammeter 0-50mA (Fultineter D.C. $50 \mu \mathrm{~A}-1 \mathrm{~A})$, HT Supply $0-250 \mathrm{~V}$, Variable D.C. Supply 0-15V, Electron Tube 12 AU7 and Connecting Leads.

METHOD:

STEP 1. Connect the circuit as shown in Fig. 1.

FIG. 1.

STEP 2. Adjust the anode voltage to read 150 Volts with the grid voltage at zero. Measure the anode current. Record in Table 1.

STEP 3. Maintaining E_{a} constant at 150 Volts, increase the grid voltage in 3 Volt steps to -15 Volts. Measure the anode current for each step. Record in Table 1.

STEP 4. Decrease the anode voltage to 125 Volts. Repeat step 3.

STEP 5. Decrease the anode voltage to 100 Volts. Repeat step 3.
STEP 6. Decrease the anode voltage to 75 Volts. Repeat step 3.
STEP 7. From the results in Table 1, complete a family of $\mathrm{I}_{\mathrm{a}} / \mathrm{E}_{\mathrm{g}}$ curves on Graph 1.
end Year

TEST QUESTIONS:

1. From your results in table 1, calculate the amplification factor of the triode used.

(...................................... 1Δ

(ii) Hicromhosg.m.......33....................100M MHOS
$A E a$
2. Calculate anode resistanceRa..... $\frac{1.2 a}{\text { E....Eg. CONSTANT. }}$

$$
\therefore R a=\frac{25}{255} \times \frac{1000}{1}=9090 \cdot 9 \Omega
$$

VALVE CONSTANTS (2).

The constants of an electron tube can also be determined from the anode characteristics. These characteristios are given in most valve data books.

ATM: To plot a "family of anode characteristics (I_{2} / E_{a}) curves of a triode electron tube, and to determine from them values for the tube constants at a typical working point.

APPARATUS: Voltmeter (Multimeter A.P.O. No.2), Milliammeter 0-50mA (Multimeter D.C. $50 \mu \mathrm{~A}-1 \mathrm{~A}$), HT Supply $0-250 \mathrm{~V}$, Variable D.C. Supply 0-9V, Electron Tube 12 AU7 and Connecting Leads.

METHOD:

STEP 1. Connect the circuit as shown in Fig. 1.

FIG. 1.
STEP 2. Decrease the anode and grid voltages to zero.
STEP 3. Maintaining the grid voltage constant at O Volts, increase the anode voltage in 25 Volt steps to 150 Volts. Measure the anode current for each step. Record in Table 1.
STEP 4. Repeat step 3 with grid voltage of -3 Volts.
STEP 5. Repeat step 3 with grid voltage of -6 Volts.
STEP 6. Repeat step 3 with grid voltage of -9 Volts.
STEP 7. From the results in Table 1, complete a family of $E a / I_{a}$ curves on Graph 1.

Ia	E_{g}	E						
		ov	25 V	50 V	75 V	100 V	125 V	150 V
	OV							
	-3V							
	-6V			-				
	-9V							

TABLE 1.

IEST QUESTIONS:

1. From your results calculate the anode resistance of the electron tube used for the experiment. r_{a}.
2. Calculate amplification factor
3. Calculate mutual conductance

NEED FOR GRID BIAS.

Grid bias is the fixed potential applied to the control grid of an electron tube to ensure its correct operation. When operating on the linear section of the $I_{a} /$ Egg characteristic curve uniform changes in grid voltage result in uniform changes in anode current. When the grid is made positive with respect to the cathode, grid current flows causing distortion of the output.

ATM: To study the necessity for grid bias.

APPARATUS: Oscillator, Amplifiers, C.R.O. and Connecting Leads.

DEMONSTRATION

METHOD:

STEP 1. Connect the circuit as shown in Fig. 1.

FIG. 1.

STEP 2. Record the waveform of the oscillator on Graph 1.

GRAPH 1.

STEP 3. Connect the circuit as shown in Fig. 2.

FIG. 2. AMPLIFIER CORRECTLY BIASSED.

STEP 4. Record the waveform of the amplifier on Graph 2.

2nd Year

GRAPH 2.

STEP 5. Connect the circuit as shown in Fig. 3.

FIG. 3. AMPLIFIER INCORRECTLY BIASSED.
STEP 6. Record the waveform of the amplifier on Graph 3.

GRAPH 3.

TEST QUESTIONS:

1. (i) When an amplifier is unbiased the positive half cycle of the input signal becomes distorted.
(ii) Explain with sketches how this distortion is produced.
2. State two methods of obtaining grid bias:-
(i) . BATT
BIAS
(i) CATHODK. RESISTOR BIAS

PRACTICAL TRIODE VOLTAGE AMPLIFIER WITH CATHODE RESISTOR BIAS.

A triode when used as a voltage amplifier converts small alternating voltage changes in the input circuit, into larger alternating voltage changes in the output circuit.

To ensure correct operation with undistorted output cathode resistor bias is used. Anode current through the cathode resistor is such that the grid is negative with respect to the cathode. A capacitor is generally placed in parallel with the resistor to bypass the A.C. component of anode current.

AIM: To observe a cathode resistor biassed triode electron tube when connected as a voltage amplifier.

APPARATUS: Milliammeter $0-50 \mathrm{~mA}$ (Multimeter D.C. $50 \mu \mathrm{~A}-1 \mathrm{~A}$), Voltmeter $0-100 \mathrm{~V}$ (Multimeter A.P.O. No.2), Oscillator, Model Anplifier, HT supply 0-250V and Connecting Leads.

METHOD:

STEP 1. Connect the circuit as shown in Fig. 1.

FIG. 1.
STEP 2. Record the anode current in Table 1.

STEP 3. Calculate in Table 1 the value of bias voltage.
STEP 4. Measure the value of grid bias (across the bias resistor) and compare with calculated value in Table 1. $8 v$

STEP 5. Connect the oscillator to the input. Adjust the input to 1 Volt at a frequency of $1000 \mathrm{c} / \mathrm{s}$.

STEP 6. Measure the output voltage and record.
Output voltageI.P........ Volts.

STEP 7. Calculate the voltage gain.

$$
\text { Vcltage Gain }=\frac{\text { E output }}{\text { E input }}=\frac{10}{1}=10 \text { voets GAIN }
$$

局

Laboratory Projects

2nd Year

R_{K}	I_{a}	$E_{B I A S}=I_{a} \times R_{K}$
2.2 K	3.6 mA	7.92 V

2

TABLE 1.

TEST QUESTIONS:

1. What is meant by "distortion" in an amplifier?
.....DISTORTION. OCCURS.....HEEN THE OUTPUT ...WAVE FORM HAS NOT

2. On what part of the I_{a} / E_{g} characteristic must the valve be operated to prevent distortion?

3. How is the operating point on the I_{a} / E_{g} characteristic established? What factors in the circuit of fig. 1 determine the operating point?
\qquad
\qquad
\qquad
4. Why must the value of input voltage to the amplifier be limited?T.O.....PREUENT......P!ST.TORTION....AS.

5. What is the effect, on the output voltage and therefore the gain of the amplifier of disconnecting the cathode by-pass capacitor in Fig. 1 ?
...HE...QUTPUT IS ...ONLY $\frac{2}{5}$ TH'S THAT...
THE GAIN OF THE AMPLIFIER DECREASES

OSCILLATOR (L/C).

An oscillator is essentially an amplifier with positive feed back which generates an alternating current signal. In an L/C oscillator the frequency of the generated signal depends upon the values of the tuned circuit components.

AIM: To study the operation of a tuned grid oscillator.

APPARATUS: Oscillator Board, 100 V HT Supply, Filament Supply, Variable Oscillator, C.R.O. Receiver and Connecting Leads.

METHOD:

STEP 1. Connect the circuit as shown in Fig. 1.

FIG. 1.

STEP 2. Listen with the receiver and vary the feed back control (Rf) until the circuit just oscillates.

STEP 3. Replace the $0.01 \mu F$ capacitor with the $0.002 \mu F$ capacitor and listen with the receiver. Vary the feed back resistor until the circuit just oscillates.

STEP 4. Repeat steps 2 and 3 several times comparing the pitch (frequency) of the output signals.

Ind Year

DEMONSTRATION

STEP 1. Connect the circuit as shown in Fig. 2.

FIG. 2.
STEP 2. Instructor to measure the frequency of the model oscillator with -
(i) the $0.01 \mu \mathrm{~F}$ capacitor
(ii) the $0.0027 \mu \mathrm{~F}$ capacitor.

Record frequency in Table 1.

MODEL OSCILLATOR	
$0.01 \mu \mathrm{~F}$	$0.002 \mu \mathrm{~F}$
$1200 \mathrm{c} / \mathrm{s}$	c / s

TABLE 1

TEST QUESTIONS:

1. What is an oscillator? ..IS...A..DEVICE USED...FOR..THE P...PRODUCT!OM. OF. A...CONTIMOUS

2. List 3 fundamental characteristics of all oscillators.
(11....POSITIUE FEED. BAG. F.....

(3).. A. SUITABLE ... ARRANGEMENT. OF THE . CIRCUIT CONSTAMTSV
3. From your results:-
(ii) When the value of feedback resistor was decreased the amplitude
decreases.
(iii) If the tuning capacitor is changed to $0.02 \mu \mathrm{~F}$, what is the output frequency?

PENTODE ELECTRON TUBE (1).

A Pentode electron tube has five elements.

The inclusion of the screen grid increases the anode impedance and thereby the amplification factor of the tube also.

The suppressor grid overcomes the effects of secondary emission.
AIM: To study the anode characteristic I_{a} / E_{a} of a pentode electron tube.
APPARATUS: Voltmeter $0-10 \mathrm{~V}, 0-300 \mathrm{~V}$ (Multimeter A.P.O. No.2), Milliammeter $0-50 \mathrm{~mA}$
(Multimeter D.C. $50 \mu \mathrm{~A}-1 \mathrm{~A}$), HT supply 0-250V, Variable D.C. Supply 0-10V, Screen Supply 150V, Electron tube 6AU6 and Connecting Leads.

METHOD:
STEP 1. Connect the circuit as shown in Fig. 1.

FIG. 1.
STEP 2. Adjust (i) the screen voltage to 50 (ii) the control grid voltage to FIXED AT 105 V
(iii) the anode voltage to zero.

STEP 3

3. Increase the anode voltage in ascent steps to 225 V

Measure the anode current for each step. Record in Table 1.

OMMT
$\frac{9}{10} 2.0$.

Laboratory Projects
PROJECT NO. 30

TABLE 1.

TEST QUESTIONS:

1. Explain the function of (i) Screen grid (ii) Suppressor grid
2. (1)./Mcrense of AMP \quad ACTOR
3. Calculate Anode Impedance. Compare with triode.
\qquad

PENTODE ELECTRON TUBE (2).

Small changes in grid potential of a pentode electron tube will produce changes in anode current.

AIM: To study the grid voltage - anode current characteristic of a pentode electron tube.

APPARATUS: Voltmeter $0-10 \mathrm{~V}$ (Multimeter A.P.O. No.2), Milliammeter 0-50mA (Multimeter D.C. $50 \mu \mathrm{~A}-1 \mathrm{~A}$), HT Supply $0-250 \mathrm{~V}$, Screen Supply 150V, Variable D.C. Supply 0-10V, Electron Tube GAU6, and Connecting Leads.

METHOD:

STEP 1. Connect the circuit as shown in Fig. 1.

FIG. 1.

> STEP 2. Adjust (i) Anode potential to 250 Volts. (Ea)
> (ii) Screen potential to 150 Volts. ($E_{\text {Sg }}$)
> (iii) Grid voltage to zero.

Measure the anode current (I_{a}). Record in Table 1.

STEP 3. Increase the grid potential (Eg) in 1 Volt step to -6 Volts.
Measure the anode current (I_{a}) for each step. Recond in Table 1.

STEP 4. From the results in Table 1, complete a I_{a} / E_{g} curve on Graph 1.

2nd Year

E_{q}	$I_{Q} \ldots \ldots \ldots m A$	E_{9}	$I_{0} \ldots \ldots \ldots m A$
0 V	7	-4 V	0
-1 V	5	-5 V	0
-2 V	1.6	-6 V	0
-3 V	-75		

FROM PROJECT 30

TABLE 1.

A SOV CNANCE IH EA CAUSES A $\cdot 2$ ma CHANEE
IM Ia

A IV CHANGE IN Eg WOULD CAUSE A-2*A

CHANGE :N lC
$\alpha=\frac{\Delta E a}{\Delta E g}$ FOR SAME CHANGKIN
$\therefore u-\frac{50}{-1}=500$
2^{0-} IESI QUESIIONS:

1. Calculate the mutual conductance of the electron tube used for the experiment (compare with triode)

PRACTICAL PENTODE VOLTAGE AMPLIFIER.

A pentode when connected as a voltage amplifier allows small input voltages to be increased many times. This increase is possible because of the high anode impedance resulting from the inclusion of the screen grid. A capacitor is generally connected between the screen grid and the cathode to bypass the A.C. component of screen grid current.

AIM: To observe a pentode when connected as a voltage amplifier.
APPARATUS: Voltmeter 0-12OV, $0-3 V$ (Multimeter A.P.O. No.2), Oscillator, Model Amplifier and Connecting Leads.

METHOD:

STEP 1. Connect the circuit as shown in Fig. 1..

FIG. 1.

STEP 2. Adjust the input oscillator to 0.5 Volts with frequency of $1000 \mathrm{c} / \mathrm{s}$.

STEP 3. Measure the output voltage and record.
Output voltage ${ }^{\text {......5. }}$. V. Volts.

STEP
4. Calculate the voltage gain.

Voltage Gain $=\frac{\text { E output }}{\text { E input }}=\frac{52}{5}=104$
(Compare with Step 7 Project 28.)
STEP 5. Decrease the screen voltage-note effect on output voltage. DECREASES
STEP 6. Increase the screen voltage-note effect on output voltage. INCKEASFS \checkmark
STEP 7. Open the screen bypass capacitor-note effect on output voltage. DECREASFS $\sqrt{ }$
STEP 8. Vary the anode voltage-note effect on output voltage.
DECREASE IN ANODE VOLTAGE DECREASES THE OUTPUT

Laboratory Projects

TEST QUESTIONS.

1. With the aid of $\mathrm{l}_{\mathrm{a}} / \mathrm{E}_{g}$ characteristic curve, briefly explain the operation of a Pentode electron tube as a voltage amplifier.
```
2 input signal varies the PD acres the GRID WHICH VARIES THE ANODE CURRENT \(\therefore\) Ext varies
```



``` RESULTIMC ...FROM THE INCLUSION OF THE SCREEN GRID:
```

2. Explain why the voltage amplification of the Pentode was greater than that of the triode.
.....IHR.....!'!N..O.!
\qquad
\qquad
\qquad
3. Explain the reason for the effect in Step 7.

VOLTAGE DOUBLER.

A voltage doubler is a type of rectifying circuit in which the direct current output voltage is approximately twice that of the alternating input voltage. The current output depends on the value of the capacitors.

AIM: To study the operation of a voltage doubler circuit.

APPARATUS: Voltmeter 0-30V (Multimeter A.P.Q. No.2) Rectifiers $1 / 6 \mathrm{~A}$, Capacitors $4 \mu \mathrm{~F}$ and $100 \mu \mathrm{~F}$, Resistors $33 \mathrm{k} \Omega, 10 \mathrm{k} \Omega, 3.3 \mathrm{k} \Omega$, and Connecting Leads.

METHOD:

STEP 1. Connect the circuit as shown in Fig. 1.

FIG. 1.

STEP 2. Measure the input voltage. (Convert to peak value.)
E peak $=E_{\text {effective }} \times 1.414$
E peak $=$.......... $\times 1.414=\ldots .$. Volts.

Record in Table 1.
STEP 3. With the D.C. Voltmeter, measure -
(i) Voltage across C_{1}
(ii) Voltage across C_{2}
(iii) Output voltage.

Record in Table 1.
STEP 4. Connect the $33 \mathrm{k} \Omega$ resistor across the output terminals. Measure -
(i) P.D. across load resistor
(ii) Load current.

Record in Table 2.
STEP 5. Replace the $33 \mathrm{k} \Omega$ resistor with $10 \mathrm{k} \Omega$ and repeat step 4 .
STIP 6. Connect the $3.3 \mathrm{k} \Omega$ resistor and repeat step 4.
STEP 7. Replace the $4 \mu \mathrm{~F}$ capacitors with $100 \mu \mathrm{~F}$ capacitors and repeat steps 4,5 and 6.

Laboratory Projects
PROJECT NO. 33

2nd Year

TABLE 1.

TABLE 2 .

TEST QUESTIONS:

1. From the results in Table 1.
peak
The capacitors $C 1$ and $C 2$ charge to the average value of the input voltage. $\sqrt{ }$ i
2

GERMANIUM DIODE.

A germanium diode is a semi-conducting device having characteristics similar to a metal rectifier.

When a D.C. voltage of correct polarity is applied to a germanium diode, it offers a low resistance and allows a current to flow. In this connection the diode is said to be conducting.

When the voltage is reversed, the diode offers a high resistance and only a minute current will flow. In this connection the diode is in the non-conducting or high resistance direction.

ALM: To study the characteristics of a germanium diode.
APPARATUS: Germanium Diode (OA79); Variable D.C. Supply 0-20V 0-3V, Milliammeter 0-50mA, Microameter $0-100 \mu \mathrm{~A}$ (Multimeter D.C. 50 AA-1A), Voltmeter 0-50V (Multimeter A.P.O. No.2) and Connecting Leads.

METHOD:
STEP 1. Connect the circuit as shown in Fig. 1.

STEP 2. Adjust the input voltage to 2.0 Volts. Measure the circuit current. Record in Table 1.

STEP 3. Decrease the input voltage to zero on 0.5 Volt steps. Measure the circuit current for each Step. Record in Table 1.

STEP 4. Connect the circuit as shown in Fig. 2.

FIG. 2 .
STEP 5. Adjust the input voltage to 20 Volts. Measure the circuit current. Record in Table 2.

STEP 6. Decrease the input voltage in 5 Volt steps to zero. Measure the current for each step. Record in Table 2.

STHP 7. Calculate the value of resistance for each current reading in Tables 1 and 2. STHEP 8. From your results plot a graph of
(i) current versus voltage.
(ii) resistance versus voltage.

E	I	$R=\frac{E}{I}$
2.0 V		
1.5 V	15 mA	100Ω
1.0 V	9 mA	111Ω
0.5 V	3 mA	166.7Ω
0 V	0	0Ω

TABLE 1.

E	I	$R=\frac{E}{I}$
20 V	$10 u A$	$2 \mathrm{Mg} \Omega$
15 v	$5 u A$	$3 \mathrm{Mg} \Omega$
10 v	$3 u A$	$3 \mathrm{Mg} \Omega$
5 v	$1 u A$	$5 \mathrm{Mg} \Omega$
0 v		

TABLE 2.

IEST QUESTIONS.

1. Draw the symbol of a germanium diode, and indicate the conducting direction.

2. State two advantages of a germanium diode compared to a metal rectifier.

(ii) LESS OPPOSITIOM...!H....FOWARR.. DIRECTION

ZENER DIODE.

A zener diode is a silicon junction diode, whose reverse current remains extremely small below a certain value, the "Zener Voltage". Then, as the reverse voltage is raised slightly, the reverse current increases rapidly.

These characteristics allow the Zener Diode to be used as a voltage limiter or voltage regulator.

AIM: To study the operation of a zener diode.

APPARATUS: Zener Diode (Z2A33, 5\%) Variable D.C. Supply 0-6V, Voltmeter 0-10V (Multimeter A.P.O. No.2), Milliammeter 0-100mA (Multimeter 50 MA-1A) and Connecting Leads.

CAUTION. MAXIMUM CURRENT MUST NOT EXCEED 85 mA .

METHOD:

STEP 1. Connect the circuit as shown in Fig. 1.

FIG. 1.

STEP 2. Adjust the input voltage to 1 Volt. Measure the circuit current. Record in Table 1.

STEP 3. Increase the input voltage as per Table 1 to 3.0 Volts. Measure the circuit current for each step. Record in Table 1.

STEP 4. From the results in Table 1, complete a graph of E and I of the Zener diode reverse characteristic.

PROJECT NO. 35
2nd Year

REVERSE VOLTS	REVERSE CURRENT
IV	
2 V	
2.5 V	
3 V	

TABLE 1.

TEST QUESTION.

1. What is a Zener diode?

THERMISTOR - DIRECTLY HEATED.

Thermistors are resistors having a high negative temperature co-efficient of resistance.

When current is passed through a thermistor the heating effect causes the resistance to decrease. A themistor is therefore a current sensitive device having a non linear resistance characteristics.

AlM: To study the resistance versus current characteristic of a typical thermistor.

APPARATUS:
Thermistor Type CZ10, Voltmeter O-50V (Multimeter A.P.O. No.2), Milliammeter $0-100 \mathrm{~mA}$ (Multimeter 50 $\mathrm{A} A-1 \mathrm{~A}$), Variable D.C. supply $0-50 \mathrm{~V}$ and Connecting Leads.

METHOD:

STEP 1. Connect the circuit as show in Fig. 1.

FIG. 1.

STEP 2. Increase the circuit current to 10 mA . Measure the voltage. Record in Table 1.

STEP Increase the circuit current in 10 mA steps to 60 mA . Measure the voltage for each step. Record in Table 1.

STEP 4. Calculate the values of resistance for each step in Table 1.

STEP 5. From results in Table 1 plot a graph of resistance versus current on Graph 1.

Laboratory Projects

2nd Year

1 mA	E VOLTS	$R=\frac{E}{I}$
10		
20		
30		
40		
50		
60		

TABLE 1.

IEST QUESTIONS.

1. From your results.

When the current was increased the resistance remained constant increased | decreased |
| :--- | therefore the thermistor has a negative temperature

co-efficient of resistance.
2. Sketch the symbol of a directly heated thermistor

THERMISTOR - INDIRECTLY HEATED.

A thermistor is a resistor having a very high negative temperature co-efficient of resistance.

The thermistor element consists of a small bead of resistance material which is formed on two parallel wires. These may be -
(i) directly heated
(ii) indirectly beated.

AIM: To study the temperature (current) versus resistance characteristic of an indirectly
heated type themistor.

APPARATUS:
Thermistor (Mype B25), Ohm-Meter (Multimeter A.P.O. No. 2 Ohms x 100) Milliammeter 0-20mA (Multimeter 50 $\mathrm{HA}-1 \mathrm{~A}$), Variable D.C. Supply O-50V, and Connecting Leads.

CAUTION. WAIT 60 SECONDS BETWEEN EACH STEP FOR STABILISATION.

METHOD:
STEP 1. Connect the circuit as shown in Fig. 1.

FIG. 1.

STEP 2. Measure the resistance. Record in Table 1.

STEP 3. Increase the current of the heater to 5 mA . Measure the resistance. Record in Table 1.

STGP 4. Increase the current of the heater in 5 mA steps to 20 mA . Measure the resistance for each step. Record in Table 1.

STEP 5. From results in Table 1 plot a graph of resistance versus heater current (temperature) on Graph 1.

2nd Year

HEATER CURRENT	RESISTANCE	
0	mA	
5	mA	
10	mA	
20	mA	

TABLE 1.

IEST QUESTIONS.

1. Sketch the symbol of an indirectly heated thermistor
2. From your results -
remains constant
(i) When the heater current (temperature) is increased the resistance increases
decreases
(ii) What is the resistance of the thermistor when cold?

VARISTOR.

A varistor is a voltage dependent semi-ccnducting material (silicon-carbide), the resistance of which varies with the applied voltage.

When used as a spark quench across a relay it has the advantage of being non-polarised and self restoring.

AIM: To study the voltage/resistance characteristic of a voltage dependent resistor.

APPARATUS: Varistor (Phillips type VDR P-128), Williammeter $0-100 \mathrm{~mA}$ (Multimeter DC $50 \mu A-1 \mathrm{~A}$), Voltmeter 0-50V (Multimeter A.P.O. No.2), Variable D.C. Supply 0-50V and Connecting Leads.

METHOD:

STEP 1. Connect the circuit as shown in Fig. 1.

FIG. 1.

STEP 2. Adjust the input voltage to 5 Volts. Measure the circuit current. Record in Table 1.

STEP 3. Increase the input voltage as in Table 1 to 24 Volts. Measure the circuit current for each step. Record in Table 1.

STEP 4. Calculate the resistance for each step in Table 1.

STEP 5. From results of Table 1 plot a graph of resistance versus voltage on graph 1.

STEP 6. Reverse voltage supply and repeat steps 2 and 3. (Compare current readings.)

2nd Year

E VOLTS	1 mA	$R=\frac{E_{0}}{I}$
5		
10		
15		
20		
22.5		
24		

TABLE 1.

GRAPH 1.

IEST QUESTIONS.

1. Sketch the symbol of a varistor.
2. From your graph, describe the characteristics of a voltage dependent resistor

TRANSISTOR - COMMON BASE.

A transistor or crystal triode is a semi-conductor device, one of its most important application being in amplifiers. In contrast to electron tubes, transistors are essentially current controlled devices.

When connected so that the base electrode is common to both input and output circuits (common base configuration), current amplification Alpha is the ratio of the change in collector current $\left(I_{C}\right)$ to the change in emitter current (I_{E}) or $\alpha=\frac{\text { small change } I_{C}}{\text { small change } \mathrm{I}_{\mathrm{E}}}$

Voltage amplification is possible because of the low impedance input circuit (emitter base) and the high impedance output circuit (collector base).

Leakage current $I_{c o}$ is largely determined by thermally released "minority current carriers" making the transistor sensitive to temperature change.

AIM: To study transistor behaviour in common base configuration.

APPARATUS:
Transistor 0C70, Milliammeter 0-10mA (Multimeter A.P.O. No.2), Milliammeter $0-50 \mu \mathrm{~A}, 0-10 \mathrm{~mA}$ (Multimeter DC 50 $\mathrm{LA}-1 \mathrm{~A}$) Battery 1.5V, 4.5V Tapped, Potentiometer $5 \mathrm{k} \Omega 5 \mathrm{~W}$, Resistor $1 \mathrm{k} \Omega$ and Connecting Leads.

METHOD:

STEP 1

1. Connect the circuit as shown in Fig. 1.
(500Ω resistor protects emitter base junction as this is connected i:1 the conducting direction.)

FIG. 1.
STEP 2. Note the collector current (with the input open circuit). Measure the leakage current $I_{c o}$ as indicated by I_{C} meter. Record in Table 1.
STEP 3. Change range of I_{C} meter to $0-1 \mathrm{~mA}$. Close the switch SWA. Adjust the emitter current (I_{E}) to 0.6 mA and measure the collector current (I_{C}) and base current $\left(I_{B}\right)$. Record in Table 2.

STEP 4.
Increase the emitter current in 0.2 mA steps to 1 mA . Measure the collector current and base current for each step.
STEP 5.
Increase collector voltage in 1.5 V steps to 4.5 V . Measure the collector current for each step. Record in Table 3.

2nd Year

TABLE 1.

EMIT TER CURRENT	0.6 mA	0.8 mA	1 mA
COLLECTOR CURRENT			
BASE CURRENT			
TABLE 2.			

$$
\text { Note: }-I_{E}=I_{C}+I_{B} .
$$

COLLECTOR VOLTAGE $\left(E_{c}\right)$	COLLECTOR CURRENT (Ic)
1.5 V	mA
3.0 V	mA
4.5 V	mA

TABLE 3.

$$
\text { Note:- Collector Impedance }=\frac{\text { Change } E_{C}}{\text { Change } I_{C}}
$$

TEST QUESTIONS:

1. Draw a labelled sketch to show the construction of a P.N.P. transistor.
2. Draw the symbol used to represent a P.N.P. transistor.
3. From your results, calculate the current gain alpha (α).
4. In the common base configuration, the emitter current (l_{E}) is the addition of $\ldots \ldots \ldots \ldots$................ and and the value of collector current (I_{C}) is independant of
increases
5. When the collector voltage is increased, the collector current remains the same, therefore the collector of output decreases
output impedance is $\begin{aligned} & \text { large } \\ & \text { small }\end{aligned}$.

transistor - VOLTAGE AMPLIFIER COMMON BASE.

A transistor is a semi-conductor device used for amplification and is current controlled. Amplification, in common base configuration, Alpha (α) is the ratio of the change in collector current $\left(I_{C}\right)$ to the change in emitter current (I_{E}) or $\alpha=\frac{\text { change } I_{C}}{\text { change } I_{E}}$.

Project 39 showed that the collector current changes are slightly less than the emitter current changes; voltage and power gains are achioved however owing to the fact that nearly all of the current emitted by the low impedance input circuit is collected in the high impedance output circuit.

$$
\text { Voltage Gain }=\frac{\text { Change } \mathrm{EC}_{\mathrm{C}}}{\text { Change } \mathrm{E}_{\mathrm{E}}}
$$

AIM: To denonstrate the voltage gain of a transistor in common base configuration.

APPARATUS: Transistor OC.70, Voltmeter 0-10V (Multimeter A.P.0. No.2), Killiammeter 0-10mA (Multimeter D.C. $50 \mu \mathrm{~A}-1 \mathrm{~A}$), Resistors $1 \mathrm{k} \Omega$, $5 \mathrm{k} \Omega$, Potentiometer $5 \mathrm{k} \Omega 5 \mathrm{w}$, Batteries 1.5 V and 9 V and Connecting Leads.

METHOD:

STEP 1. Connect the circuit as shown in Fig. 1.

STEP 2. Calculate the input resistance.
(i) Decrease the potentiometer to zero ohms.
(ii) Measure the emitter current (I_{E}) and record. $I_{\mathbb{E}}=\ldots{ }_{m A}$.
(iii) Total $\mathrm{R}=\frac{\mathrm{E}}{\mathrm{I}_{\mathrm{E}}}=\frac{1.5}{}=\ldots \ldots \ldots \ldots$. obms.

STEP 3. Adjust the emitter current to 1.2 mA . Measure collector voltage $=$............... Volts.
STEP 4. Adjust the emitter current to 0.7mA. Measure collector voltage $=$.............. Volts.
STEP 5. Calculate change in collector voltage. Record in Table 1.

Laboratory Projects

2nd Year

STEP 6. Calculate the change in ewitter voltage.
$=$ change in emitter current X resistance emitter (Step 2).
$=\quad=\quad \mathrm{mV}$.

Record in Table 1.

CHANGE E_{E}	CHANGE E_{C}	VGAN $=\frac{\text { CHANGE } E_{C}}{\text { CHANGE } E_{E}}$

TABLE 1.

STEP 7. Calculate in Table 1 the voltage gain.

NOTE: We have assumed that the input impedance as calculated in Step 2 remains constant during Steps 3 and 4.

The input impedance does rise slightly as the input current is reduced. However, as it is still very low compared to the output impedance, this does not affect the aim of the project, although the figure obtained in Step 6 is an approximation.

IEST QUESTIONS.

1. The input impedance emitter base junction biased in the forward direction is large
2. Voltage gain in common base circuit is possible due to the high input impedance and the high output impedance.

180 degrees
3. The phase change between input and output voltage is

0 degrees.
90 degrees

TRANSISTOR - COMMON EMITTER (1).

When the transistor is ccmnected with the enitter electrode common to both the input and output circuits (common eraitter configuration), the current amplification "Beta" (B) is the ratio of the change in base current (I_{B}) to the resulting change in collector current (I_{C}), that is $\beta=\frac{\text { Change } I_{C}}{\text { Change } I_{B}} \quad E_{C}$ constant

Leakace current $I_{c o}$ is largely determined by the thermally released "minority current carriers", making the transistor sensitive to temperature change.

The value of leakage current in common emitter configuration is greater than that of common base.

AIM: To study transistor behaviour in common emitter configuration in comparison to common base configuration.

APPARATUS: Transistor 0C.70, Resistor $10 \mathrm{k} \Omega$, Potentiometer $0.5 \mathrm{M} \Omega$, Battery 1.5 V and 6 V . Milliammeter $0-500 \mu \mathrm{~A}$ (Multimeter DC $50 \mu \mathrm{~A}-1 \mathrm{~A}$), Milliammeter $0-1,0-10 \mathrm{~mA}$ (Multimeter A.P.O. No.2) and Connecting Leads.

NETHOD:

STEP 1. Connect the circuit as shown in Fig. 1.

STEP 2. With SWA open, measure the leakage current ($I_{C O}$). Record in Table 1. (Compare with Project 39 Step 2.)

STEP 3. Hold and warm the transistor for 30 seconds. Measure leakage current (Ico). Record in Table 1. Note that the transistor is temperature sensitive. (Test will not be effective when ambient temperature approaches blood heat.)

STEP 4. Close the switch SWA. Adjust the base current (I_{B}) to $20 \mu \mathrm{~A}$. Measure the collector current (I_{C}). Record in Table 2.

STEP 5. Increase the base current (I_{B}) in $20 \mu \mathrm{~A}$ steps to $100 \mu \mathrm{~A}$. Measure the collector current (I_{C}) for each step. Record in Table 2.

Laboratory Projects

2nd Year

TABLE 1.

BASE CURRENT (IB)	COLLECTOR CURRENT (IC)
$20 \mu \mathrm{~A}$	
$40 \mu \mathrm{~A}$	
$60 \mu \mathrm{~A}$	
$80 \mu \mathrm{~A}$	
$100 \mu \mathrm{~A}$	

TABLE 2.

TEST QUESTIONS.

1. Calculate the current gain (Beta) of the transistor, for a change in base current (18) of 40 to 804 A .
$(B)=\frac{\text { change in coll ector current I } C}{\text { change in base current } I_{B}}$
180 degrees
The phase change between input and output is 0 degrees.
90 degrees
2. Briefly account for the higher leakage current of transistors in common emitter configuration when compared with common base circuits.

TRANSISTOR - COMMON EMITTER (2).

The input resistance, in common emitter circuits depends upon the base voltage and base current, and can be found from the $\mathrm{E}_{\mathrm{B}} / \mathrm{I}_{\mathrm{B}}$ static characteristic curve.

For small signal considerations the input resistance can be calculated -

$$
\text { Input resistance }=\frac{\text { small change base voltage } E_{B}}{\text { small change base current } I_{B}}
$$

AIM: To study the base input characteristic of a transistor (common emitter).

APPARATUS: Transistor Model, Microammeter 0-100 A , (Multimeter D.C. $50 \mu \mathrm{~A}-1 \mathrm{~A}$), Voltmeter 0-1V (Multimeter A.P.O. No.2), Batteries 1.5 V and 4.5 V and Connecting Leads.

METHOD:

STEP 1. Connect the circuit as shown in Fig. 1.

FIG. 1.

* Note: To convert the A.P.O. Multimeter $0-1 \mathrm{~mA}$ range to $0-1$ Volts for Base Voltage readings, use the 460 ohm R3 resistor.

STEP 2. Before closing supply ensure potentiometer at point "a".
\qquad
STEP 3. Adjust the collector voltage to -4.5 Volts. Increase the base voltage in 50 mV steps to 300 mV . Measure the base current. Record in Table 1.

STEP 4. From the results in Table 1, plot a graph of I_{B} versus E_{B} on Graph 1.

Laboratory Projects

2nd Year

COLLECTOR VOLTAGE $-4.5 \mathrm{~V}$				
ε_{B}	I_{B}	ε_{8}	I_{B}	
50 mV		200 mV		
100 mV		250 mV		
150 mV		300 mV		

TABLE 1.

- GRAPH 1 .

TEST QUESTIONS:

1. From your results calculate the input resistance for -
(i) A change $E_{B} 150-200 \mathrm{mV}\left(E_{C}-4.5\right)$

TRANSISTOR - COMMON EMITTER (3).

The output or collector impedance of a transistor circuit is the opposition offered to the A.C. output current.

In common emitter circuits the output impedance depends upon -

$$
\frac{\text { Change in collector voltage } E_{C}}{\text { Change in collector current } I_{C}}
$$

The output impedance can be found from the E_{C} / I_{C} static characteristic curve.
AIM: To study the collector voltage versus collector current characteristic of a transistor (common emitter).

APPARATUS: Transistor model, Microammeter 0-100 $\mu \mathrm{A}$, (Multimeter DC $50 \mu \mathrm{~A}-1 \mathrm{~A}$) Milliammeter O-10mA, (Multimeter A.P.O. No.2) Supply Voltage 1.5 V and 4.5 V Tapped and Connecting Leads.

METHOD:

STEP 1. Connect the circuit as shown in Fig. 1. Before connecting the battery supply ensure the potentiometer is at point "A".

FIG. 1.

STEPR 2. Adjust the base current $\left(I_{B}\right)$ to $25 \mu \mathrm{~A}$.
Increase the collector voltage to 1.5 Volts. Measure the collector current. Record in Table 1.

STEP 3. Increase the collector voltage (E_{C}) in 1.5 Volt steps to 4.5 Volts. Measure the collector current (I_{C}) for each step. Record in Table 1.

STEP 4. Increase the base current $\left(I_{B}\right)$ to $50 \mu \mathrm{~A}$. Repeat Step 3.
STEP 5. Increase the base current $\left(I_{B}\right)$ to $75 \mu \mathrm{~A}$ and repeat Step 3.
STEP 6. Increase the base current (I_{B}) to $100 \mu \mathrm{~A}$ and repeat Step 3.
STEP 7. From the results in Tabie 1, complete a family of I_{C} / E_{C} curves in Graph 1.
STEP 3. Note similarity to pentode $\mathrm{E}_{\mathrm{a}} / \mathrm{I}_{\mathrm{a}}$ curves project No. 30.

2nd Year

$I_{B}=25 \mu \mathrm{~A}$		$I_{B}=50 \mu \mathrm{~A}$		$I_{B}=75 \mu \mathrm{~A}$		$I_{B}=100 \mu \mathrm{~A}$	
E_{C}	I_{C}	E_{C}	I_{C}	E_{C}	I_{C}	E_{C}	I_{C}
1.5 V		1.5 V		1.5 V		1.5 V	
3.0 V		3.0 V		3.0 V		3.0 V	
4.5 V		4.5 V		4.5 V		4.5 V	

GRAPH 1.

IEST QUESTIONS.

1. From your Graph (i) Calculate the current gain of the transistor used for the experiment.
(ii) Calculate the output impedance with $\left(I_{B}\right) 75 \mu A$ and a change in Collector Voltage (E_{C}) from $3 V$ to 4.5%.

TRANSISTOR - COMMON EMITTER (4).

Current gain in common emitter circuits Beta (β) is the ratio of the change in Collector Current to the change in Base Current. Amplification can be calculated from the I_{C} / I_{B} static characteristic curve.

ATM: To study the static characteristic curve $\left(I_{C} / I_{B}\right)$ of a transistor (common emitter).

APPARATUS: Transistor Model, Microammeter O-100 A , (Nultimeter DC $50 \mu \mathrm{~A}-1 \mathrm{~A}$) Milliammeter 0-10mA, (Multimeter A.P.O. No.2) Battery 1.5 V and 4.5 V Tapped and Connecting Leads.

METHOD:

STEP 1. Connect the circuit as shown in Fig. 1.

FIG. 1.

STEF 2. Before cornecting the supply, ensure that the potentiometer is at point "A".

STEF 3 - Adjust the collector voltage (E_{C}) to -3 Volts. Measure the Collector Current $\left(I_{C}\right)$. Record in Table 1.

STEP 4. With (EN) corstant at -3 Volts, vary the base curxent (I_{B}) in 20uA steps to $100 \mu A$. Weasure the collector current $\left(I_{C}\right)$ for each step. Record in Table 1.

STEP
5. From the results in Table 1, plot a graph of I_{C} / I_{B} on Graph 1.

2nd Year

COLLECTOR VOLTAGE-3 VOLTS			
I_{B}	I_{c}	I_{B}	I_{c}
0	.05 mA	$60 \mu \mathrm{~A}$	22 mA
$20 \mu \mathrm{~A}$.65 mA	$80 \mu \mathrm{~A}$	3.1 mA
$40 \mu \mathrm{~A}$	1.4 mA	$100 \mu \mathrm{~A}$	41 mA

TABLE 1.

1. When the Bias Current is increased the Collector Current
increases decreases
smativa
2. Small changes in Base Current cause no changes in Collector Current.
3. Calculate the current gain of the transistor used.
$B=\frac{\Delta k}{\Delta l 16}$

TRANSISTOR AMPLIFIER - COMMON EMITTER.

A transistor used as an amplifier allows small changes in input current to control larger changes in the output circuit.

$$
\begin{aligned}
& \text { Current amplification }-\frac{\text { Change } I_{C}}{\text { Change } I_{B}} \\
& \text { Voltage amplification }-\frac{\text { Change } E_{C}}{\text { Change EB }}
\end{aligned}
$$

AIM: To study the amplification of a common emitter amplifier.

APPARATUS: Transistor Amplifier, Receiver, T.M.S. and Connecting Leads.

METHOD:

STEP 1
. Connect the circuit as shown in Pig. 1. ADS OSC DUTPUT TO Odbm

FIG. 1.

NOTE: To decrease gain insert 1500 R resistor in primary circuit.
STEP 2. Listen with receiver to - (i) the input. (ii) the output.
Byons
STEP 3 . Replace the 300Ω resistor and receiver with a 600 s termination.

STEP
4. Acluast the-r-M. N. to ZeIo. With the range switch at read the input and record in Table 1. STEP 5. With the range switch at +20 read the output and record in Table 1.

STEP 6. Calculate the gain of the amplifier in Table 1.

TABLE 1.

TEST QUESTIONS.

1. Calculate the output power of the amplifier when the input power is $2 m$.

6

$1 \cdot 8$ AnTILog $=\frac{P_{1}}{2} \ldots \ldots .$.

output

 126 mw2. What type of bias is used for Fig. 1.

2 Comвиатіом Bu As

OSCILLATOR - TRANSISTOR TUNED BASE.

An oscillator is an electronic device which generates an alternating current. The frequency of the generated signal depends upon the tuned circuit components.

An oscillator is an amplifier with positive feed back, where energy is fed back from the output to the input to overcome the circuit losses and to sustain oscillation.

AIM: To study the operation of a tuned base transistor oscillator.

APPARATUS: Oscillator Model, Battery 9V, Receiver, C.R.O. and Connecting Leads.

METHOD:

DEMONSTRATION.

STEP 1. Connect the circuit as shown in Fig. 1.

STEP 2. Connect the C.R.O. to the output and record the wave shape on Graph 1.

GRAPH 1.

STEP 3. Replace the 0.1μ F (C1) capacitor with the $0.01 \mu \mathrm{~F}$ capacitor.
STEP 4. Connect the C.R.O. to the output and record the wave shape on Graph 2.

2nd Year

GRAPH 2.

PROJECT
STEP 1. Connect the circuit as shown in Fig. 1.

STEP 2. Listen across the output.

STEP 3. Replace the $0.1 \mu \mathrm{~F}$ capacitor with the $0.01 \mu \mathrm{~F}$ capacitor and repeat Step 2.

STEP 4. Switch off. Reverse one side of feedback transformer. Switch on and listen across the output.

IEST QUESTIONS.

increases

1. When the value of the capacitance is decreased the frequency remains the same. decreases

[^2]3. Briefly account for the effect in Step 4.

OSCILLATOR - TRANSISTOR TUNED COLLECTOR.

An oscillator is an electronic device which generates an alternating current. The frequency of the generated signal is dependent upon the tuned circuit components.

An oscillator is an amplifier with positive feed-back, where energy is fed back from the output to the input to overcome the circuit losses and to sustain oscillation.

AIM: To study the operation of a tuned collector transistor oscillator.

APPARATUS: Oscillator Model, Battery 9V, C.R.O. Receiver and Connecting Leads.
METHOD:
DEMONSTRATION.

STEP 1. Connect the circuit as shom in Fig. 1.

FIG. 1.

STEP 2. Connect the C.R.O. to the output and record the wave shape on Graph 1.

GRAPH 1

STEP 3: Replace the 0.1μ F (C1) capacitor with the 0.01μ capacitor.
STEP 4. Connect the C.R.O. to the output and record the wave shape on Graph 2.

Laboratory Projects

and Year

GRAPH 2

PROJECT

STEP 1. Connect the circuit as show in Fig. 1.

STEP 2. Listen across the output.

STEP 3. Replace the $0.1 \mu F$ capacitor with the $0.01 \mu F$ capacitor and repeat Step 2.

IESI QUESTIONS.

increases

1. When the value of the capacitance is decreased, the frequency remains the sane.
decreases
2. What is the purpose of the $200 k \Omega$ resistor.

OSCILLATOR - TRANSISTOR PHASE SHIFT.

An oscillator is an electronic device which generates an alternating current. The frequency is dependent upon the value of components in the phase shift net:rork being such that only one frequency is fed back to the base in phase.

An oscillator is an amplifier with positive feed-back where energy is fed back from the output to the input to overcome the circuit losses and to sustain oscillation.

AIM: To study the operation of a phase shift transistor oscillator.

APPARATUS: Oscillator Mocel, Battery Supply 9V, C.R.O., Receiver and Connecting Leads.

METHOD:
 DEMONSTRATION.

STEP 1. Connect the circuit as shown in Fig. 1.

FIG. 1.
STEP 2. Connect the C.R.O. to the output.
Record the wave shape in Graph 1.

GRAPH 1.
STEP 3. Connect a $0.04 \mu \mathrm{~F}$ capacitor in parallel with each of the $0.01 \mu \mathrm{~F}$ capacitors.

2nd Year

STEP 4. Connect the C.R.O. to the output.
Record the wave shape in Graw 2.

GRAPH 2.

PROJECT

STEP 1. Connect the circuit as shown in Fig. 1.

STHP 2. Listen across the output.

STEP 3. Connect the $0.04 \mu F$ capacitors in parallel with the $0.01 \mu \mathrm{~F}$ capacitors and repeat Step 2.

IEST QUESTIONS.

increases

1. In Fig. 1 when the capacitance is increased the frequency remains the same.
decreases
2. Calculate the phase angle of 0.01 uF and $10 \mathrm{k} \Omega$ at $1000 \mathrm{c} / \mathrm{s}$.

SWITCHING TRANSISTORS (1).

Transistors in common emitter configuration can be used as switching devices to operate relays etc.

Small changes in jnput current control larger changes in output current.
ATM: To study the operation of a transistor in a circuit used for operating a relay from D.C. or A.C. pulses.

APPARATUS: Model Switching Board, Oscillator $1000 \mathrm{c} / \mathrm{s}$, Battexy Supply and Connecting Leads.

METHOD:

STEP 1. Connect the circuit as shown in Fig. 1.

STEP 2. Close the switch SWA. Note the relay operation.
STEP 3. Open the switch SWA. Note the relay releases.
STEP 4. Connect the circuit as shown in Fig. 2.

FIG. 2.

2nd Year

STEP 5. At a frequency of $1000 \mathrm{c} / \mathrm{s}$, adjust the oscillator voitage to approx. 1 Volt R.M.S.

STEP 6. Close the switch SWA. Note the operation of the relay.

STEP 7. Open the switch SWA. Note the release of the relay.

IEST QUESTIONS.

1. In Fig. 1.

2. In Fig. 2.
[^3]
SWITCHING TRANSISTORS (2).

Switches can be classified broadly into three groups -
(i) Manually controlled
(ii) Electrically controlled
(iii) Electronically controlled.

Electronic switching circuits using transistors can be operated or switched at a much higher frequency than the mechanical or electromechanical methods, as there is less transit switching time, and no mechanical parts.

Transistors can be used to operate a counting device as in the bi-stable circuit of Fig. 1. Pulses are applied to the input, and for every two input pulses the indicator operates once. This type of circuit can be used for binary counting.

AIM: To study pulse switching in a transistor circuit.

APPARATUS: Transistor Model and Connecting Leads.

METHOD:
STEP 1. Connect the circuit as shown in Fig. 1.

FIG. 1.

STEP 2. Note which transistor is switched. When the indicator is released VT1 is in the switching condition. When the indicator is operated VT2 is in the switching condition.

STEP
3. Apply one pulse to the input from the dial.

Note that when VT2 is switched the indicator operates and renains operated.

2nd Year

STEP 4. Apply a second pulse from the dial.
Note that the indicator releases. (VT1 is switched.)

STEP 5. Apply two pulses. Observe that indicator operates once.

DEMONSTRATION.

STEP 6. Connect the various models together. Remove strap (Fig. 1) from all models except No. 1 as in Fig. 2.

FIG. 2 .

STEP 7. Explain briefly using model method of binary counting.

IESI QUESIIONS.

1. Froe your observations, hoz any input pulses were required to operate and release the indicator once.
2. In Fig. 1.

When VI2 is conducting, VT1 is cut off. Why is this so?
\qquad
\qquad
\qquad

TRANSFORMER - TURNS RATIO.

Turns ratio or transformation ratio (T) is the ratio of the SECONDARY turns (\mathbb{N}_{S}) to the PRIMARY turns (N_{p}) -

$$
T=\frac{N_{S}}{N_{P}}
$$

The secondary voltage (ES) is dependent upon the primary voltage (Ep) and the turns ratio (T) -

$$
\mathrm{E}_{\mathrm{S}}=\mathrm{E}_{\mathrm{P}} \mathrm{~T}
$$

AIM: To prove that the secondary voltage of a transforner is dependent on its turns ratio. APPARATUS: Oscillator $1000 \mathrm{c} / \mathrm{s}$, Transformer 4012A; Voltmeter 0-50V (Multimeter A.P.O. No.2) and Connecting Leads.

METHOD:

STEP 1. Connect the circuit as shown in Fig. 1.

FIG. 1.
STEP 2. Measure Ep and ES. Record in Table 1.
STEP 3. Calculate the turns ratio in Table 1.
STEP 4. Connect the circuit as shown in Fig. 2.

FIG. 2.
STEP 5. Measure EP_{p} and E_{S}. Record in Table 2.
STEP 6. Calculate the turns ratio in Table 2.
STEF 7. Connect the circuit as shown in Fig. 3.
and Year

FIG. 3.

STEP 8. Measure Ep and ES. Record in Table 3.

STEP 9. Calculate the turns ratio in Table 3.

E_{p}	E_{s}	$T=\frac{E_{s}}{E_{p}}$
$10 V$	$10 V$	1

TABLE 1.

TABLE 2.

E_{p}	E_{s}	$T=\frac{E_{s}}{E_{p}}$
15 V	28.2	1.88

TABLE 3.

TEST QUESTIONS.

1. From your results -
(i) when $E_{s}=E_{p}$ the secondary turns .E....U.A....
(ii) When the turns ratio is 4 and the primary turns are 100 , the secondary turns are \qquad
(iii) When the secondary turns are 1000 and the turns ratio is 8 , the primary turns are

125

TRANSFORMER - RESISTIVE LOAD.

Under no load conditions, increasing or decreasing the secondary turns of a transformer does not vary the primary current.

When a resistive load is connected to the secondary the primary current increases.

For a given applied voltage, the magnitude of the primary current is dependent upon -
(i) Value of resistive load.
(ii) The turns ratio.

AIM: To study the effects of load resistance and turns ratio on the primary current.
APPARATUS: $1000 \mathrm{c} / \mathrm{s}$ Oscillator, Transformer 4012A, Milliammeter 0-50mA (Multimeter DC $50 \mu \mathrm{~A}-1 \mathrm{~A}$), Resistors $1 \mathrm{k} \Omega, 600 \Omega$ and 150Ω and Connecting Leads.

METHOD:
STEP 1. Connect the circuit as shown in Fig. 1.

FIG. 1.
STEP 2. Neasure the no load primary current. Record in Table 1.

STEP 3. Connect the $1 \mathrm{k} \Omega$ resistor to the secondary. Measure the primary current. Record in Table 2.

STEP 4. Replace the $1 \mathrm{k} \Omega$ resistor with (i) 600Ω and (ii) 150Ω and in each case measure the primary current. Record in Table 2.

STEP 5. Increase the turns ratio to 2:1.
STEP 6. Measure the no load primary current. Record in Table 1.

STEP 7. Compare results of steps 2 and 6 in Table 1.

STEP 8. Connect the $1 \mathrm{k} \Omega$ resistor to the secondary. Measure the primary current. Record in Table 2.

STEP 2. Replace the $1 \mathrm{k} \Omega$ resistor with (i) 600Ω and (ii) 150Ω and in each case measure the primary current. Record in Table 2.

2nd Year

NO LOAD SECONDARY	
$T=1: 1$	$T=2: 1$
$I_{P}-3 m A$	$I_{P}-3 m \in A$

TABLE 1.

TABIE 2.

TEST QUESTIONS.

1. When a resistive load is connected to the secondary of a transformer, energy absorbed by the load is provided by -

THE PRIMARY VOLTAGE INDUCING ENERGY FROM

increases
Ma ing the-satre
tennenses
(ii) Why is this sol A LAREER VOLTAGEIS INDUCED INTI IN THE SECONDARY R. PROVIPED..........REMAINS THE SAME TS IS ...INCREASED

TRANSFORMER - REFLECTED IMPEDANCE.

The value of impedance reflected into the primary winding of a transformer depends on -
(i) Turns Ratio.
(ii) Impedance of secondary load.

AIM: To study impedance transformation in a transformer with varying turns ratios and resistive loads.

APPARATUS: $1000 \mathrm{c} / \mathrm{s}$ Oscillator, Milliammeter $0-50 \mathrm{~mA}$ (Multimeter DC $50 \mu \mathrm{~A}-1 \mathrm{~A}$), Voltmeter 0-10V (Multimeter A.P.O. No. 2), Resistors $150 \Omega, 600 \Omega 1 \mathrm{k} \Omega 4 \mathrm{k} \Omega$ and $2.4 \mathrm{k} \Omega$, Transformer 4012A and Connecting Leads.

METHOD:
STEP 1. Connect the circuit as shown in Fig. 1.

FIG. 1.
STEP 2. Adjust the primary voltage to 5 volts. Measure I_{p}. Record in Table 1 .

STEP 3. Calculate the reflected impedance of the primary winding in Table 1.

STEP 4. Replace the 150 ohm resistor with (i) 600 ohm, then (ii) 1000 ohm. Repeat Steps 2 and 3 for each value of resistance.

STEP 5. Increase the turns ratio to $2: 1$ ard connect the 600Ω resistor to the secondary.

STEP 6. Adjust the primary voltage to 5 volts. Measure I_{p}. Record in Table 2.

STEP 7. Calculate the reflected impedance of the primary winding in Table 2.

STEP 8. Replace the 600Ω resistor wi.th (i) 2400Ω, ther (ii) 4000Ω. Repeat Steps 6 and 7 for each value of resistance.

STEP 9. Compare the primary impedance values of Table 1 and Table 2.

end Year

TURNS RATIO $=1: 1$				
SECONDARY LOAD	E_{p}	I_{p}	$z_{p}=\frac{E_{p}}{I_{p}}$	
200 2000	5 V	2.5 mA	2000Ω	
5000	5 V	1 mA	5000Ω	
1000Ω	$5 V$.5 mA	10000Ω	

TABLE 1.

TURNS RATIO $=2: 1$			
SECONDARY LOAD	E_{p}	I_{p}	$Z_{p}=\frac{E_{p}}{I_{p}}$
$000-\Omega$ 2000Ω	5 V	10 mA	500Ω
200Ω 5000Ω	5 V	4 mA	1250Ω
4000Ω 10000Ω	5 V	2 mA	2500Ω

TABLE 2.

TEST QUESTIONS.

1. (i) When the turns ratio is 1 and the resistance of the secondary load is increased, the primary current
iffemeases
increases
 decreases
decreases-

$$
I P \downarrow=1 s \not \subset \times T
$$

2. From your results, prove that $T^{2}=\frac{Z_{S}}{Z_{p}}=\frac{2000}{500}=4=\sqrt{4}=2$.

TRANSFORMER - IMPEDANCE MATCHING.

For most practical purposes maximum possible power is transferred from a source of supply to a load, when the load impedance equals the impedance of the source.

In A.C. circuits, unequal impedance are matched by means of a transformer with a suitable turns ratio.

$$
\text { Primary Impedance }(Z)=\frac{\text { Secondary Impedance }\left(\mathrm{Z}_{\mathrm{S}}\right)}{\text { Turns ratio }{ }^{2}\left(\mathrm{~T}^{2}\right)}
$$

AIM: To study impedance matching in a transformer with varying turns ratios and resistive loads. APPARATUS: $1000 \mathrm{c} / \mathrm{s}$ Oscillator with 600Ω output. Milliammeter 0-50mA (Multimeter DC 50uA-1A), Voltmeter 0-10V (Multimeter A.P.O. No.2), Resistors $50 \Omega 150 \Omega 400 \Omega 600 \Omega$ and $1 \mathrm{k} \Omega$, Transformer 4012A and Connecting Leads.

METHOD:

\qquad 1. Connect the circuit as shown in Fig. 1.

FIG. 1.
STEP 2. Adjust the primary voltage to 15 volts. Measure E_{S} and I_{S}. Record in Table 1 .
STEP 3. Replace the 1000 ohm resistor with (i) 600 ohm (ii) 400 olm . Repeat Step 2 for each value of resistance.

STEP 4. Calculate values of power for each step in Table 1.
STEP 5. Vary the turns natio to $1: 2$ and reconneat the 4000 lad resistor.
STEP 6. Readjust the primary voltage to 15 volts. Measure E_{S} and, I_{S}. Reoord in Table 2.
STEP 7. Replace the 400 ohm resistor with (i) 150 ohm (ii) 50 ohm.
STEP 8. Repeat step 6 for each value of resistance.
STEP 9. Calculate values of power for each step in Table 2.

Ind Year

TURNS RATIO $=1: 1$			
SECONDARY LOAD	E_{5}	I_{s}	$P(\mathrm{~mW})=E \times I(\mathrm{~mA})$
1000Ω			mW
600Ω			mW
400Ω			mW

TABLE 1.

TURNS RATIO $=1: 2$			
SECONDARY LOAD	E_{S}	1_{5}	$P(\mathrm{~mW})=E \times I(\mathrm{~mA})$
400Ω			
150Ω			
50Ω			

TABLE 2.

TEST QUESTIONS.

1. Fram your results.

In Step 1 (load 150 ohms), if the turns ratio was $1: 2$ calculate the impedance of the primary.
2. (i) Calculate the reflected impedance of a secondary resistive load of 50000 through a transformer having 5000 turns secondary and 1000 turns primary.
(ii) Calculate the resistance of load when the internal resistance of a generator is 2000 and the transformer has 5000 turns primary and 1000 turns secondary.

AMMETERS.

An ammeter is used to measure the current in a circuit. Nost ammeters are capable of accurate measurements, but reliable readings can only be obtained by using a meter which is suitable for the particular circuit conditions.

Using an unsuitable ammeter will affect normal circuit conditions and give incorrect readings.

AIM: To study the use of ammeters in varying circuit conditions.

APPARATUS: Milliammeter 100 $0-1 \mathrm{~mA}$, Milliameter $0-1 \mathrm{~mA}$, (Multimeter A.P.O. No.2), Resistors $2 k \Omega$ and $50 \mathrm{k} \Omega$, Battery Supply and Connecting Leads.

METHOD:

STEP 1. Connect the circuit as shown in Fig. 1.

FIG. 1.
STEP 2. Measure the circuit current. Record in Table 1.
STEP 3 3. Replace the $100 \Omega / 1 \mathrm{~mA}$ meter with the A.P.O. Multimeter $0-1 \mathrm{~mA}$. Measure the circuit current. Record in Table 1.

STEP 4. Using Ohms Law calculate the circuit current in Table 1. Compare with the measured values of Steps 2 and 3.

STEP 5. Connect the circuit as shown in Fig. 2.

FIG. 2.

Laboratory Projects

2nd Year

STEP 6. Measure the circuit current. Record in Table 2.

STEP 7. Using Ohns Law, calculate the circuit current in Table 1. Compare with the measured value of Step 6 .

CIRCUIT RESISTANCE $2 K \Omega$			
METER R	E	1	$1=\frac{E}{R}$
100Ω			
500Ω			

TABLE 1.

CIRCUIT RESISTANCE $50 K \Omega$			
METER R	E	1	$1=\frac{E}{R}$
500Ω			

TABLE 2.

IEST QUESTIONS.

1. From your results in Table 1 -

Why is this so? \qquad
\qquad
\qquad
\qquad

VOLTMETERS.

A voltmeter is used to measure the voltage of a circuit, or the P.D. across circuit components. Most voltmeters are capable of accurate measurements but reliable readings can only by obtained by using a meter which is suitable for the particular circuit conditions.

Using an unsuitable voltmeter will affect normal circuit conditions, and give incorrect readings.

AIM: To study the use of voltmeters in varying circuit conditions.

APPARATUS: Voltmeter $100 \Omega /$ Volt, Voltmeter $1000 \Omega /$ Volt, Resistors $1 \mathrm{k} \Omega, 1.5 \mathrm{k} \Omega, 50 \mathrm{k} \Omega, 75 \mathrm{k} \Omega, 100 \mathrm{k} \Omega$ Battery Supply and Connecting Leads.

METHOD:

STEP 1. Connect the circuit as shown in Fig. 1.

FIG. 1.

STEP 2 2. Using the $100 \Omega /$ Volt meter, measure the P.D. between 50 V positive and points A, B, C, D, and E. Record in Table 1.
\qquad 3. Using the multimeter A.P.O. No. 2 repeat Step 2.

STEP

4. Calculate the P.D. between 50 V positive and points A, B, C, D and E in Table 1. Compare with the measured values of Steps 2 and 3.

MEASUREMENTS BETWEEN 5OV \& POINTS	METER IOO Ω VOLT MEASUREMENTS	CALCULATIONS	MULTIMETER A.P.O. MEASUREMENTS
A			
B			
C			
D			
E			

TABLE 1.

IEST QUESTIOHS

1. From your results in Table 1 -
(i) Which meter more accurately measures the circuit P.Ds.?
(ii) Why is this so? \qquad
2. Is the measured reading at point "E" correct? \qquad

Give reasons for your answer

A.C. METERS.

A moving coil meter is unsuitable for measurement of A.C., as each reversal of current tends to reverse the deflection of the pointer.

When a moving coil meter is adapted to read A.C. by the use of rectifiers, the deflection of the pointer corresponds to the average value of the pulses, but the scale is calibrated to the R.M.S. or "effective" value, which is 1.11 times greater for an alternating current with a pure sine wave.

AIM: To adapt a moving coil meter to read A.C.

APPARATUS:
Milliameter 0-10mA (Multimeter A.P.O. No. 2) Milliammeter 0-10mA (Multimeter A.C. $1 \mathrm{~mA}-10 \mathrm{~A}$) Resistor $10 \mathrm{k} \Omega$ Rectifiers 2/2A, Battery Supply and Connecting Leads.

METHOD:
\qquad 1. Connect the circuit as showm in Fig. 1.

FIG. 1.

STEP 2. Note the deflection of the pointers.

STEP 3. Connect the circuit as shown in Fig. 2.

FIG. 2.

Laboratory Projects

2nd Year

STEP 4. Measure the circuit current. Record in Table 1.

STEP 5. Calculate the R.M.S. value. Record in Table 1.

TABLE 1.

IEST QUESTIONS

1. When a moving coil meter is connected to a sinusoidal A.C. source, the scale reading shows 95 mA . State the name given to the value of current which governs the meter's deflection, and calculate its magnitude.
\qquad
\qquad
2. When a moving coil meter with bridge rectifier is used to measure D.C., calculate the actual value of direct current in the circuit when the scale reading is 5.55 mA .

Answer mA.

VACUUM TUBE VOLTMETER.

To measure small P.D.'s in high impedance circuits it is necessary to use a voltmeter having an impedance much higher than the part of the circuit under test. A V.T.V.M. is a suitable instrument for this purpose as it has an impedance of approximately $10 \mathrm{M} \Omega$.

AIM: To study the V.T.V.M. when used to measure voltage.

APPARATUS: V.T.V.M., 1000 $/$ /Voltmeter, Resistors $1 \mathrm{M} \Omega$ and $4 \mathrm{M} \Omega$, Oscillator Model Board, 50V Supply, 250V H.T. Supply, Filament Supply and Connecting Leads.

METHOD:

DEMONSTRATION

\qquad . Connect the circuit as shown in Fig. 1.

FIG. 1.
STEP 2. Ad.just the supply voltage to 50 Volts.

STEP . Using V.T.V.M., measure the P.D. across each resistor. Record in Table 1.

STEP 4. Using Voltmeter 1000 /Volt, repeat Step 3.

STEP
2. Compare the results of Steps 3 and 4 in Table 1.

STEP 6. Connect the circuit as shown in Fig. 2.


```
STEP 7. Using V.T.V.M., measure the voltage between the grid and cathode.
STEP 8. Using Voltmeter 1000s/Volt, repeat Step 7.
STEP 9. Compare the results of Steps }7\mathrm{ and 8 in Table 2.
```

METER	P.D.	
	$1 M \Omega$	$4 M \Omega$
$1000 \Omega /$ VOLT		
V.T.V.M.		

TABLE 1.

METER	P.O.
1000Ω IVOLT	.
V.T.V.M.	

TABLE 2.

IESI QUESTIOHS.

1. State the advantage of using a V.T.V.M. for measuring a P.D. in a high iapedance circuit.
2. From your results in Table?.

Explain the reason for the different readings.
\qquad
\qquad
\qquad

OSCILLOSCOPE - FAMILIARIZATION.

The oscilloscope which is one of the most versatile instruments used in the field of electronics, displays a graph of voltage variations with respect to time.

AIM: To become familiar with the controls of a cathode ray oscilloscope.

APPARATUS: Cathode Ray Oscilloscope.

METHOD: NOTE:- Control names to be altered to suit the available C.R.O.

STEP 1. Note the position and the functions of controls listed below -
(i) Intensity - controls the level of brightness.
(ii) $\frac{\text { Focus }}{\text { trace. }}$ in conjunction with the intensity control sets the sharpness of
(iii) Horizontal Shift - shifts the trace horizontally.
(iv) Vertical Shift - shifts the trace vertically.
(v) Sweep Range Selector - sets the oscilloscope for viewing different frequencies.
(vi) Sweep Frequency Adjust - fine adjustment for (v).
(vii) $\frac{\text { Sync Adjust }}{\text { amplitude. }}$ - eliminates horizontal drift by varying the synchronization
(viii) Sync Selector - selects either internal or external synchronization.
(ix) Vertical Attenuator - adjusts the height of the waveform.
(x) Vertical Amplitude - provides fine adjustment of (ix).
(xi) Horizontal Input Selector - selects internal or external input to horizontal amplifier.
(xii) Horizontal Amplitude - provides width adjustment.

Laboratory Projects

Ind Year

STEP 2.
(i) Set the Select Sweep Range and Sweep Frequency Adjust to the centre of their range.
(ii) Set the Vertical and Horizontal Shift Controls to the centre of their range.
(iii) Set the Sync Selector to Internal, and the Sync Adjust to minimum.
(iv) Turn the oscilloscope on, and the Intensity to 75% of full control. Set the Vertical Amplitude control to minimum.
(v) Set the Horizontal Amplitude of 75% of full control.
(vi) Centre the trace.
(vii) Adjust the Intensity and Focus.
(viii) Vary the Horizontal Amplitude and note the effect on the width of trace (for a $5^{\prime \prime}$ screen the trace is approximately $4^{\prime \prime}$ wide).

STEP 3. Note the positions and designations of the terminals provided for connection of external voltages to the deflecting plates.

IESI quESTIONS.

1. List two applications of an Oscilloscope.
\qquad
2. State the function of the following terminals.
(i) The Vertical or "Yo amplifier COWRECTS iNPUT VIA AMP TO Y PLATE
(ii) The Vertical or "Yn plates . COMNECTS INPUT TO Y PLATE
(iii) The Horizontal or " x^{n} amplifier COHRECTS NMPUT VIA X AMP TO X PLATE
(iv) The Horizontal or "X" plates CONNECTS INPUT TO X PLATE
(v) External Sychronization TO. CGET BOTH WAVE FORMS IM PVADE USINCT AN EXTERNAL SOURCE OF SUPPly.

OSCILLOSCOPE.

The oscilloscope displays a pattern of voltage variation with respect to time.

The instantaneous position of the electron beam is dependent upon -
(i) the potential applied to the vertical plates.
(ii) the potential applied to the horizontal plates.

AIM: To move the electron beam to various positions on the screen.

APPARATUS: C.R.O., Battery Supply 45V, Voltmeter 50-0-50V, Potentiometer $5 \mathrm{k} \Omega 50 \mathrm{~W}$ and Conrecting Leads.

CAUTION: Reduce the intensity control until the spot is just visible.

METHOD:

STEP 1. Connect the circuit as shown in Fig. 1.

FIG. 1.

STEP 2. Adjust the supply voltage to zero.
Note the position of the electron beam. Record in Fig. 2.

STEP 3. Increase the supply voltage in 5 Volt steps to +15 Volts. Note the position of the electron beam for each step. Record in Fig. 2 .

STEP 4. Decrease the supply voltage in 5 Volt steps to zero. Note the position of the electron beam for each step. Compare with Fig. 2.

STEP 5. Reverse the supply voltage and repeat steps 2 to 4.

Ind Year

STEP 6. Connect the variable voltage supply to the horizontal plates.

STEP 7. Adjust the supply voltage to zero.
Note the position of the electron beam. Record in Fig. 3.

STEP 8. Increase the supply voltage in 5 Volt steps to 15 Volts. Note the position of the electron beam for each step. Record in Fig: 3.

STEP 2. Decrease the supply voltage in 5 Volt steps to zero. Note the position of the electron beam for each step. Compare with Fig. 3.

STEP 10. Reverse the supply voltage and repeat steps 7 to 9.

FIG. 2.

FIG. 3 .

TEST QUESTIONS.

1. In the normal position the electron beam is in the ...C.E............ \qquad of the screen. When the voltage on the upper
up
vertical plates is increased in a positive direction the beam moves screen, when the voltage is dow
reversed the beam movesD.O................
2. When a potential is applied to the horizontal plates, the beam moves \qquad ACROSS the screen, the
distance the beam moves depends on T.4.E. \qquad POTEMTIMC. OF. T. HE HORIZONTAL

OSCILLOSCOPE - VIEWING WAVEFORM.

The oscilloscope is used to display a pattern of voltage variation with respect to time.

AIM: To study the waveform of a signal with the C.R.O.

APPARATUS: Variable Frequency Oscillator, C.R.O. and Connecting Leads.

METHOD:

STEP 1. (i) Turn on the power switch and allow the C.R.O. to warm up.
(ii) Set the Horizontal Selector to Internal Sweep position
(iii) Adjust the Focus and Intensity for optimum viewing.
(iv) Adjust the Horizontal Amplitude Control for a convenient width of line.
(v) Centre the line on the screen.

STEP 2. Connect the circuit as shown in Fig. 1.

FIG. 1.

STEP 3. (i) Adjust the Vertical Amplitude Control for desired height.
(ii) Set the Sync-Selector to Internal Sync.
(iii) Set the Sweep Range Selector and the Sweep Frequency Adjust for two cycles of waveform on the screen. (Note position.)
(iv) Adjust the Sync to prevent horizontal drift of pattern.

Laboratory Projects

end Year

In

STEP 4. With Sweep Controls in the same position, adjust the Oscillator to $500 \mathrm{c} / \mathrm{s}$.
STEP 5. Repeat Step 4 with $1500 \mathrm{c} / \mathrm{s}$.
STEP 6. Repeat Step 4 with $2000 \mathrm{c} / \mathrm{s}$.

* TEST QUESTIONS.

1. From your observations in Steps 3, 4, 5 and 6, complet Graphs 1 to 4 respectively.

GRAPH 1.

GRAPH 3.

GRAPH 2.

GRAPH 4.
2. Show the patterns you would expect on the screen when the oscillator frequency is (i) $250 \mathrm{c} / \mathrm{s}$ and (ii) $750 \mathrm{c} / \mathrm{s}$.

OSCILLOSCOPE - FREQUENCY MEASUREMENT.

The cathode ray oscilloscope can be used to determine frequency by means of Lissajous figures.

These figures are obtained by applying two sine wave voltages simultaneously to the two sets of deflection plates. The known frequency is connected to the horizontal plates whilst the unknown is connected to the vertical plates. From the resultant pattern (Fig. 1) the unknown frequency can be found.

FIG. 1.

AIM: To determine frequency from lassajous figures.

APPARATUS: Cathode Ray Oscilloscope, Oscillator Fixed $1000 \mathrm{c} / \mathrm{s}$, Oscillator Variable and Connecting Leads.

METHOD:

STEP 1. Turn the Horizontal Selector to External.

STEP 2. Connect the circuit as shown in Fig. 2.

FIG. 2.

2nd Year

STEP 3. Set the variable oscillator to a frequency of -
(i) ${ }^{4} 000 \mathrm{c} / \mathrm{s}$
(ii) $4800 \mathrm{c} / \mathrm{s}$
(iii) 1200
(iv) $2000 \mathrm{c} / \mathrm{s}$.

Record the pattern for each frequency on Figures 1-4 respectively.

IEST QUESTIOMS.

1. When a known frequency of $5 \mathrm{kc} / \mathrm{s}$ is applied to the horizontal deflecting plates, determine the unknown frequency from the Lissajous patterns below.

(1) c / s.

(ii) $.2 .5 .5 .1 . \mathrm{c} / \mathrm{s}$.

(iii) \qquad c / s.

OSCILLOSCOPE - VOLTAGE MEASUREMENT.

The oscilloscope can be used to measure the peak to peak value of alternating voltage. When the C.R.O. is calibrated by applying a known voltage and calculating the volts per inch of screen, the unknown voltage can be found by direct comparison.

NOTE:- An internal sweep is not essential but when used it eliminates the possibilities of danger to the screen and facilitates the measurement of the vertical deflection.

AIM: To measure voltage using the C.R.O.

APPARATUS: C.R.O., Voltmeter 0-50V (Multimeter A.P.O. No.2), Potentiometer 5kg, Resistors
10 kQ , $15 \mathrm{k} \mathrm{\Omega}$ and 25 kQ , Supply Voltage $50 \mathrm{~V}, 50 \mathrm{c} / \mathrm{s}$ and Connecting Leads.

METHOD:

STEP 1. Connect the circuit as shown in Fig. 1.

FIG. 1.

STEP 2. Adjust the input voltage to 50 Volts. Calculate peak to peak value in Table 1.

STEP 3. Increase the Internal Sweep frequency.

STEP 4. Set the Vertical Attenuator and Vertical Amplitude for a waveform height of 2.8 inches.

NOTE POSITION OF CONTROLS.

STEP 5. Disconnect the input voltage from the C.R.O.

2nd Year

STEP 6. Connect the circuit as shown in Fig. 2.

FIG. 2.

STEP 7. Measure the P.D. across each resistor. Record in Table 2.
STEP 8. Using Ohms Law, calculate the P.Ds. in Table 2.

STEP 9. Compare the results of Steps 7 and 8.

E RMS	E PEAK TO PEAK
SO VOLTS	

TABLE 1.

RESISTANCE	MEASURED P.D.	CURRENT	P.D. $=1 \times$ R

TABLE 2.

IESI LUESTIONS.

1. Before measuring voltage the C.R.O. must be calibrated against a voltage.
peak to peak
? 2. When the C.R.O. is used to measure alternating voltage, it measures the effective voltage.

FREQUENCY MEASUREMENT (B.F. METHOD).

When two alternating currents having different frequencies are added together over a period of time, at some instants they aid, and at others they oppose. The amplitude of the resultant current varies at a rate equal to the difference in frequencies.

This principle can be used to determine the frequency of an unknown signal by "beating" it with a known frequency. The difference or beat frequency can be detected by a meter or a monitoring device such as a loud-speaker or head receiver.

ADM: To determine the frequency of a signal by using the beat frequency method.

APPARATUS:
2 Variable Oscillators, Resistor, Voltmeter 0-10V (Multimeter A.P.O. No.2), Amplifier, Loud-speaker, Head Receiver and Connecting Leads.

METHOD:
DEMONSTRATION

STEP 1. Connect the circuit as shown in Fig. 1.

(ii) the beat tone from the loud-speaker.

STEP 4. Continue to vary oscillator 2 until "Zero beat" is reached.

STEP 5. Record the frequency. c/s.

2nd Year

PROJECT.

STEP 1. Connect the circuit as shown in Fig. 2.

FIG. 2.

STEP 2. Adjust oscillator 1 to approximately $2000 \mathrm{c} / \mathrm{s}$.

STEP 3. Determine the unknown frequency by the "beat frequency" method.

Answer c.p.s.

STEP 4. Repeat Step 2 with new unknown frequency. Answer c.p.s.

TEST QUESTIONS.

1. The "beat frequency" is the $\ldots \ldots \ldots \ldots \ldots$. . in frequency between the known and the unknown frequencies.
2. When the two frequencies are identical, the beat frequency is

VOLTAGE REGULATION - SATURABLE CHOKE.

Voltage regulation by mieans of a saturable choke is achieved by using the output D.C. to vary the input impedance offered to the applied A.C.

AIM: To study voltage regulation.

APPARATUS:
Supply ${ }^{\text {Voltages } 50 V / 50 ~ c / s, ~ 50 V ~ D . C ., ~ S a t u r a b l e ~ C h o k e ~(T r i m a x ~ T P ~} 1633$ 240/115V $0.7 / 1.35 \mathrm{~A}$ or TA 763) Potentioneter 5k 50W, Milliameter $0-50 \mathrm{~mA}$ (Multimeter A.C. $1 \mathrm{~mA}-10 \mathrm{~A}$) Milliammeter $0-500 \mathrm{~mA}$ (Multimeter D.C. $50 \mu \mathrm{~A}-1 \mathrm{~A}$), Voltmeter $0-50 \mathrm{~V}$ (multimeter A.P.O. No.2), Inductor, Battery Eliminator and Connecting Leads.

STEP 5. Calculate the primery impedance for each value of direct current, in Table 1.

DEMONSTRATION

STEP 6. Connect the circuit as shown in Fig. 2.

FIG. 2.

2nd Year

STEP 2. Demonstrate (i) Manual regulation.
(ii) Automatic regulation.

TABLE 1.

TEST QUESTIONS.

1. What is the function of the saturable choke?
\qquad
\qquad
\qquad
2. When the seconcary load current increases, the P.D. across the load resistor and the decreases.

[^0]: greater than
 2. Above the resonant frequency E_{L} is thematime E_{C}. lessmokhan

[^1]: 3. In effect, FIGS. 2 and 3 are respectively

 ## high -pares

[^2]: increases increases
 2. When the feed back resistance is increased the frequency remains the same, and the amplitude remains the same. decreases
 decreases

[^3]: When $1000 \mathrm{c} / \mathrm{s}$ is connected to the input, the relay operates. Why is this so?

